Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Cell Biol ; 129(4): 909-24, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7744964

RESUMO

The Silent Information Regulatory proteins, Sir3 and Sir4, and the telomeric repeat-binding protein RAP1 are required for the chromatin-mediated gene repression observed at yeast telomeric regions. All three proteins are localized by immunofluorescence staining to foci near the nuclear periphery suggesting a relationship between subnuclear localization and silencing. We present several lines of immunological and biochemical evidence that Sir3, Sir4, and RAP1 interact in intact yeast cells. First, immunolocalization of Sir3 to foci at the yeast nuclear periphery is lost in rap1 mutants carrying deletions for either the terminal 28 or 165 amino acids of RAP1. Second, the perinuclear localization of both Sir3 and RAP1 is disrupted by overproduction of the COOH terminus of Sir4. Third, overproduction of the Sir4 COOH terminus alters the solubility properties of both Sir3 and full-length Sir4. Finally, we demonstrate that RAP1 and Sir4 coprecipitate in immune complexes using either anti-RAP1 or anti-Sir4 antibodies. We propose that the integrity of a tertiary complex between Sir4, Sir3, and RAP1 is involved in both the maintenance of telomeric repression and the clustering of telomeres in foci near the nuclear periphery.


Assuntos
Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Telômero/genética , Compartimento Celular , Núcleo Celular/metabolismo , Imunofluorescência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Substâncias Macromoleculares , Proteínas Nucleares/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citologia , Solubilidade , Relação Estrutura-Atividade , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo
2.
Science ; 250(4980): 549-53, 1990 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-2237406

RESUMO

The yeast protein RAP1, initially described as a transcriptional regulator, binds in vitro to sequences found in a number of seemingly unrelated genomic loci. These include the silencers at the transcriptionally repressed mating-type genes, the promoters of many genes important for cell growth, and the poly[(cytosine)1-3 adenine] [poly(C1-3A)] repeats of telomeres. Because RAP1 binds in vitro to the poly(C1-3A) repeats of telomeres, it has been suggested that RAP1 may be involved in telomere function in vivo. In order to test this hypothesis, the telomere tract lengths of yeast strains that contained conditionally lethal (ts) rap1 mutations were analyzed. Several rap1ts alleles reduced telomere length in a temperature-dependent manner. In addition, plasmids that contain small, synthetic telomeres with intact or mutant RAP1 binding sites were tested for their ability to function as substrates for poly(C1-3A) addition in vivo. Mutations in the RAP1 binding sites reduced the efficiency of the addition reaction.


Assuntos
Cromossomos Fúngicos/ultraestrutura , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Saccharomyces cerevisiae/genética , Fatores de Transcrição , Sequência de Bases , Sítios de Ligação , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Mutação , Plasmídeos , Poli A/metabolismo , Poli C/metabolismo , Sequências Repetitivas de Ácido Nucleico , Temperatura , Transformação Genética
3.
Curr Opin Genet Dev ; 8(2): 233-9, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9610415

RESUMO

In the yeast Saccharomyces cerevisiae, heterochromatin-like regions are formed at the silent mating type loci and at telomeres. The past year of investigations has led to a clearer understanding of the nature of nucleation and spreading of heterochromatin, as well as uncovering a fascinating link between silencing, the nucleolus and aging.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Animais , Nucléolo Celular , Cromatina , Reparo do DNA , Replicação do DNA , Proteínas Fúngicas/metabolismo , Humanos , Ligantes , Telômero , Ubiquitinas/metabolismo
5.
Curr Biol ; 8(5): R161-4, 1998 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-9501060

RESUMO

A ribosomal frameshift is required for the synthesis of an essential component of the yeast telomerase pathway; this and other findings on telomerases from many species raise interesting questions regarding the evolutionary relationship between telomerases and retrotransposons lacking long terminal repeats.


Assuntos
DNA/fisiologia , Retroelementos/fisiologia , Telomerase/fisiologia , Animais , Análise Mutacional de DNA , Evolução Molecular , Mutação da Fase de Leitura , Humanos , Fases de Leitura Aberta
6.
Curr Biol ; 8(14): 831-4, 1998 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-9663392

RESUMO

The Ku heterodimer, conserved in a wide range of eukaryotes, plays a multiplicity of roles in yeast. First, binding of Ku, which is composed of a 70 kDa (Hdf1p) and an 80 kDa (Hdf2p) subunit [1-3], to double-strand breaks promotes non-homologous end-to-end joining of DNA [3]. Second, Ku appears to participate in DNA replication, regulating both the number of rounds of replication permissible within the cell cycle and the structure of the initiation complex [3,4]. Furthermore, mutations in HDF1 or HDF2 rapidly reduce telomeric poly (TG1-3) tract size [1-3], hinting also at a possible telomeric function of Ku. We show here that the two subunits of the Ku heterodimer play a key role in maintaining the integrity of telomere structure. Mutations in either Ku subunit increased the single-strandedness of the telomere in a cell-cycle-independent fashion, unlike wild-type cells which form 3' poly(TG1-3) overhangs exclusively in late S phase [5]. In addition, mutations enhanced the instability of elongated telomeres to degradation and recombination. Both Ku subunits genetically interacted with the putative single-stranded telomere-binding protein Cdc13p. We propose that Ku protects the telomere against nucleases and recombinases.


Assuntos
Antígenos Nucleares , DNA Helicases , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Telômero/metabolismo , Sequência de Bases , Cromossomos Fúngicos , Cruzamentos Genéticos , Ciclina B/química , Ciclina B/genética , Ciclina B/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Heterozigoto , Autoantígeno Ku , Substâncias Macromoleculares , Mutagênese Sítio-Dirigida , Proteínas Nucleares/química , Oligodesoxirribonucleotídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/fisiologia , Telômero/genética , Telômero/ultraestrutura , Fatores de Transcrição/metabolismo
7.
Mol Cell Biol ; 21(19): 6559-73, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11533244

RESUMO

We have previously identified a process in the yeast Saccharomyces cerevisiae that results in the contraction of elongated telomeres to wild-type length within a few generations. We have termed this process telomeric rapid deletion (TRD). In this study, we use a combination of physical and genetic assays to investigate the mechanism of TRD. First, to distinguish among several recombinational and nucleolytic pathways, we developed a novel physical assay in which HaeIII restriction sites are positioned within the telomeric tract. Specific telomeres were subsequently tested for HaeIII site movement between telomeres and for HaeIII site retention during TRD. Second, genetic analyses have demonstrated that mutations in RAD50 and MRE11 inhibit TRD. TRD, however, is independent of the Rap1p C-terminal domain, a central regulator of telomere size control. Our results provide evidence that TRD is an intrachromatid deletion process in which sequences near the extreme terminus invade end-distal sequences and excise the intervening sequences. We propose that the Mre11p-Rad50p-Xrs2p complex prepares the invading telomeric overhang for strand invasion, possibly through end processing or through alterations in chromatin structure.


Assuntos
Cromátides/genética , Endodesoxirribonucleases , Exodesoxirribonucleases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros , Telômero/genética , Fatores de Transcrição , DNA/genética , Proteínas de Ligação a DNA/fisiologia , Desoxirribonucleases de Sítio Específico do Tipo II/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Modelos Genéticos , Mutação , Recombinação Genética , Deleção de Sequência , Complexo Shelterina , Troca de Cromátide Irmã
8.
Mol Cell Biol ; 12(11): 5159-73, 1992 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-1406688

RESUMO

The Saccharomyces cerevisiae DNA-binding protein RAP1 is capable of binding in vitro to sequences from a wide variety of genomic loci, including upstream activating sequence elements, the HML and HMR silencer regions, and the poly(G1-3T) tracts of telomeres. Recent biochemical and genetic studies have suggested that RAP1 physically and functionally interacts with the yeast telomere. To further investigate the role of RAP1 at the telomere, we have identified and characterized three intragenic suppressors of a temperature-sensitive allele of RAP1, rap1-5. These telomere deficiency (rap1t) alleles confer several novel phenotypes. First, telomere tract size elongates to up to 4 kb greater than sizes of wild-type or rap1-5 telomeres. Second, telomeres are highly unstable and are subject to rapid, but reversible, deletion of part or all of the increase in telomeric tract length. Telomeric deletion does not require the RAD52 or RAD1 gene product. Third, chromosome loss and nondisjunction rates are elevated 15- to 30-fold above wild-type levels. Sequencing analysis has shown that each rap1t allele contains a nonsense mutation within a discrete region between amino acids 663 and 684. Mobility shift and Western immunoblot analyses indicate that each allele produces a truncated RAP1 protein, lacking the C-terminal 144 to 165 amino acids but capable of efficient DNA binding. These data suggest that RAP1 is a central regulator of both telomere and chromosome stability and define a C-terminal domain that, while dispensable for viability, is required for these telomeric functions.


Assuntos
Proteínas de Ligação ao GTP/genética , Saccharomyces cerevisiae/genética , Telômero , Alelos , Sequência de Aminoácidos , Sequência de Bases , Deleção Cromossômica , DNA Fúngico , Proteínas de Ligação ao GTP/metabolismo , Dados de Sequência Molecular , Mutação , Não Disjunção Genética , Saccharomyces cerevisiae/metabolismo , Proteínas rap de Ligação ao GTP
9.
Mol Cell Biol ; 16(5): 2483-95, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8628316

RESUMO

Rap1p binds to sites embedded within the Saccharomyces cerevisiae telomeric TG1-3 tract. Previous studies have led to the hypothesis that Rap1p may recruit Sir3p and Sir3p-associating factors to the telomere. To test this, we tethered Sir3p adjacent to the telomere via LexA binding sites in the rap1-17 mutant that truncates the Rap1p C-terminal 165 amino acids thought to contain sites for Sir3p association. Tethering of LexA-Sir3p adjacent to the telomere is sufficient to restore telomeric silencing, indicating that Sir3p can nucleate silencing at the telomere. Tethering of LexA-Sir3p or the LexA-Sir3p(N2O5) gain-of-function protein to a telomeric LexA site hyperrepresses an adjacent ADE2 gene in wild-type cells. Hence, Sir3p recruitment to the telomere is limiting in telomeric silencing. In addition, LexA-Sir3p(N2O5) hyperrepresses telomeric silencing when tethered to a subtelomeric site 3.6 kb from the telomeric tract. This hyperrepression is dependent on the C terminus of Rap1p, suggesting that subtelomeric LexA-Sir3p(N205) can interact with Rap1p-associated factors at the telomere. We also demonstrate that LexA-Sir3p or LexA-Sir3p(N205) tethered in cis with a short tract of telomeric TG1-3 sequences is sufficient to confer silencing at an internal chromosomal position. Internal silencing is enhanced in rap1-17 strains. We propose that sequestration of silencing factors at the telomere limits the efficiency of internal silencing.


Assuntos
Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Serina Endopeptidases , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Telômero , Transativadores/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cromossomos Fúngicos , Proteínas Fúngicas/biossíntese , Proteínas de Ligação ao GTP/metabolismo , Genótipo , Modelos Estruturais , Mutagênese , Plasmídeos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Supressão Genética , Transativadores/biossíntese , Transcrição Gênica , Proteínas rap de Ligação ao GTP
10.
Mol Cell Biol ; 8(6): 2379-93, 1988 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-3043176

RESUMO

The yeast rna mutations (rna2 through rna10/11) are a set of temperature-sensitive mutations that result in the accumulation of pre-mRNAs at the nonpermissive temperature. Most of the yeast RNA gene products are involved in and essential for mRNA splicing in vitro, suggesting that they code for components of the splicing machinery. We tested this proposal by using an in vitro-synthesized RNA11 protein to complement the temperature-sensitive defect of the rna11 extract. During the in vitro complementation, the input RNA11 protein was associated with the 40S spliceosome and a 30S complex, suggesting that the RNA11 protein is indeed a component of the spliceosome. The formation of the RNA11-associated 30S complex did not require any exogenous RNA substrate, suggesting that this 30S particle is likely to be a preassembled complex involved in splicing. The RNA11-specific antibody inhibited the mRNA splicing in vitro, confirming the essential role of the RNA11 protein in mRNA splicing. Finally, using the anti-RNA11 antibody, we localized the RNA11 protein to the periphery of the yeast nucleus.


Assuntos
Núcleo Celular/análise , Proteínas Fúngicas/genética , Splicing de RNA , Proteínas de Saccharomyces cerevisiae , Leveduras/genética , Anticorpos Antifúngicos/imunologia , Sequência de Bases , Núcleo Celular/imunologia , Clonagem Molecular , Imunofluorescência , Proteínas Fúngicas/análise , Proteínas Fúngicas/imunologia , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Proteínas de Ligação a RNA , Temperatura , Leveduras/imunologia
11.
J Mol Biol ; 180(3): 753-9, 1984 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-6241262

RESUMO

Long poly(dA).poly(dT) tracts (poly(A) tracts), regions of DNA containing at least 20 contiguous dA residues on one strand and dT residues on the complementary strand, are found in about 2 X 10(4) copies interspersed throughout the human genome. Using poly(dA).poly(dA) as a hybridization probe, we identified recombinant lambda phage that contained inserts of human DNA with poly(A) tracts. Three such tracts have been characterized by restriction mapping and sequence analysis. One major poly(A) tract is present within each insert and is composed of from 28 to 35 A residues. In each case, the poly(A) tract directly abuts the 3' end of the human Alu element, indicating that the major class of poly(A) tracts in the human genome is associated with this family of repeats. The poly(A) tracts are also adjacent to A-rich sequences and, in one case, to a polypurine tract, having the structure GA3-GA3-GA4-GA6-GA5-GA4. We suggest that repetitive cycles of unequal crossing over may give rise to both the long poly(A) and polypurine tracts observed in this study.


Assuntos
DNA , Genes , Poli A , Sequências Repetitivas de Ácido Nucleico , Bacteriófago lambda , Sequência de Bases , DNA Recombinante , Eletroforese em Gel de Poliacrilamida , Humanos , Modelos Genéticos
12.
Genetics ; 154(2): 587-98, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10655213

RESUMO

Telomeres, the protein-DNA structures present at the termini of linear chromosomes, are capable of conferring a reversible repression of Pol II- and Pol III-transcribed genes positioned in adjacent subtelomeric regions. This phenomenon, termed telomeric silencing, is likely to be the consequence of a more global telomere position effect at the level of chromatin structure. To understand the role of telomere structure in this position effect, we have developed an assay to distinguish between the heritability of transcriptionally repressed and derepressed states in yeast. We have previously demonstrated that an elongated telomeric tract leads to hyperrepression of telomere-adjacent genes. We show here that the predominant effect of elongated telomeres is to increase the inheritance of the repressed state in cis. Interestingly, the presence of elongated telomeres overcomes the partial requirement of yCAF-1 in silencing. We propose that the formation of a specific telomeric structure is necessary for the heritability of repressed subtelomeric chromatin.


Assuntos
Cromatina/genética , Saccharomyces cerevisiae/genética , Telômero , Transcrição Gênica
13.
Genetics ; 143(1): 81-93, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8722764

RESUMO

We have identified three SIR3 suppressors of the telomeric silencing defects conferred by missense mutations within the Rap1p C-terminal tail domain (aa 800-827). Each SIR3 suppressor was also capable of suppressing a rap1 allele (rap1-21), which deletes the 28 aa C-terminal tail domain, but none of the suppressors restored telometric silencing to a 165 amino acid truncation allele. These data suggest a Rap1p site for Sir3p association between the two truncation points (aa 664-799). In SIR3 suppressor strains lacking the Rap1p C-terminal tail domain, the presence of a second intragenic mutation within the rap1s domain (aa 727-747), enhanced silencing 30-300-fold. These data suggest a competition between Sir3p and factors that interfere with silencing for association in the rap1s domain. Rap1-21 strains containing both wild-type Sir3p and either of the Sir3 suppressor proteins displayed a 400-4000-fold increase in telomeric silencing over rap1-21 strains carrying either Sir3p suppressor in the absence of wild-type Sir3p. We propose that this telomere-specific synergism is mediated in part through stabilization of Rap1p/Sir3p telometric complexes by Sir3p-Sir3p interactions.


Assuntos
Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Genes Fúngicos , Peptídeos/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Supressão Genética , Telômero , Transativadores/genética , Alelos , Sítios de Ligação , Cromossomos Fúngicos , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Genótipo , Fator de Acasalamento , Biossíntese Peptídica , Mapeamento por Restrição , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas rap de Ligação ao GTP
14.
Genetics ; 138(4): 1025-40, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7896088

RESUMO

Alleles specifically defective in telomeric silencing were generated by in vitro mutagenesis of the yeast RAP1 gene. The most severe phenotypes occur with three mutations in the C-terminal 28 amino acids. Two of the alleles are nonsense mutations resulting in truncated repressor/activator protein 1 (RAP1) species lacking the C-terminal 25-28 amino acids; the third allele is a missense mutation within this region. These alleles define a novel 28-amino acid region, termed the C-terminal tail domain, that is essential for telomeric and HML silencing. Using site-directed mutagenesis, an 8-amino acid region (amino acids 818-825) that is essential for telomeric silencing has been localized within this domain. Further characterization of these alleles has indicated that the C-terminal tail domain also plays a role in telomere size control. The function of the C-terminal tail in telomere maintenance is not mediated through the RAP1 interacting factor RIF1: rap1 alleles defective in both the C-terminal tail and RIF1 interaction domains have additive effects on telomere length. Overproduction of SIR3, a dose-dependent enhancer of telomeric silencing, suppresses the telomeric silencing, but not length, phenotypes of a subset of C-terminal tail alleles. In contrast, an allele that truncates the terminal 28 amino acids of RAP1 is refractory to SIR3 overproduction. These results indicate that the C-terminal tail domain is required for SIR3-dependent enhancement of telomeric silencing. These data also suggest a distinct set of C-terminal requirements for telomere size control and telomeric silencing.


Assuntos
DNA Fúngico/genética , Proteínas de Ligação ao GTP/genética , Regulação Fúngica da Expressão Gênica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Proteínas de Ligação a Telômeros , Telômero/fisiologia , Alelos , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Fúngicas/fisiologia , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/fisiologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Proteínas Repressoras/fisiologia , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Transativadores/fisiologia , Proteínas rap de Ligação ao GTP
15.
Genetics ; 150(3): 977-86, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9799252

RESUMO

Previous studies from our laboratory have demonstrated that tethering of Sir3p at the subtelomeric/telomeric junction restores silencing in strains containing Rap1-17p, a mutant protein unable to recruit Sir3p. This tethered silencing assay serves as a model system for the early events that follow recruitment of silencing factors, a process we term initiation. A series of LexA fusion proteins in-frame with various Sir3p fragments were constructed and tested for their ability to support tethered silencing. Interestingly, a region comprising only the C-terminal 144 amino acids, termed the C-terminal domain (CTD), is both necessary and sufficient for restoration of silencing. Curiously, the LexA-Sir3(N205) mutant protein overcomes the requirement for the CTD, possibly by unmasking a cryptic initiation site. A second domain spanning amino acids 481-835, termed the nonessential for initiation domain (NID), is dispensable for the Sir3p function in initiation, but is required for the recruitment of the Sir4p C terminus. In addition, in the absence of the N-terminal 481 amino acids, the NID negatively influences CTD activity. This suggests the presence of a third region, consisting of the N-terminal half (1-481) of Sir3p, termed the positive regulatory domain (PRD), which is required to initiate silencing in the presence of the NID. These data suggest that the CTD "active" site is under both positive and negative control mediated by multiple Sir3p domains.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Telômero/genética , Transativadores/genética , Genes Fúngicos
16.
Chromosoma ; 117(4): 357-66, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18335232

RESUMO

Mre11 is a central factor in creating an optimal substrate for telomerase loading and elongation. We have used a G2/M synchronized telomere-healing assay as a tool to separate different functions of Mre11 that are not apparent in null alleles. An analysis of healing efficiencies of several mre11 alleles revealed that both nuclease and C-terminal mutations led to a loss of healing. Interestingly, trans-complementation of the 49 amino acid C-terminal deletion (DeltaC49) and the D16A mutant, deficient in nuclease activity and partially defective in MRX complex formation, restores healing. DeltaC49 provokes Rad53 phosphorylation after treatment with the radiomimetic agent MMS exclusively through the Tel1 pathway, suggesting that a Tel1-mediated function is initiated through the C-terminal tail.


Assuntos
Reparo do DNA/fisiologia , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/fisiologia , Reparo do DNA/genética , Mutação/genética , Plasmídeos/genética , Telômero/genética , Técnicas do Sistema de Duplo-Híbrido , Leveduras
17.
Cell Mol Life Sci ; 64(2): 125-30, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17219024

RESUMO

The aim of this review is threefold. First, we want to report on recent observations on the role of telomeres in the alignment of homolog and non-homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the relationship of early telomere clustering to later recombination events. Second, we compare the similarities and differences between synaptic and asynaptic yeasts. Third, we report on the increasing evidence of the effect of meiosis on telomeric sequences that suggest an induction of a specific form of recombination processes termed telomere rapid deletion.


Assuntos
Meiose/genética , Recombinação Genética/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Telômero/genética , Proteínas de Ciclo Celular/genética , Heterocromatina/genética , Mutação/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie , Telômero/metabolismo
18.
Nucleic Acids Res ; 20(12): 3021-8, 1992 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-1620597

RESUMO

The G-rich strands of most eukaryotic telomeres are capable of forming highly folded structures in vitro, mediated, in part, through Hoogsteen G-G base pairing. The ability of most telomeres to form these structures has led to the suggestion that they play an important role in telomere addition. I have investigated this possibility in the yeast Saccharomyces cerevisiae through the use of an in vivo assay that measures healing via poly(G1-3T) addition onto plasmid substrates containing synthetic telomeres. Synthetic telomere healing is a highly size- and sequence-specific process that allows the discrimination of telomeres of differing efficiency. Plasmids containing synthetic telomeres with differing abilities to form secondary structures were tested in this assay for healing in vivo. The results of this study demonstrate that telomeres incapable of forming Hoogsteen base pairs nonetheless serve as efficient substrates for poly(G1-3T) addition, indicating that intramolecular Hoogsteen G-G base pairing is not essential for this process.


Assuntos
Composição de Bases/genética , Guanosina/metabolismo , Saccharomyces cerevisiae/genética , Telômero/metabolismo , Sequência de Bases , Replicação do DNA/genética , Metilação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Plasmídeos/genética , Recombinação Genética/genética , Telômero/química , Transformação Genética
19.
Proc Natl Acad Sci U S A ; 83(5): 1398-402, 1986 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-3513174

RESUMO

The chromosomes of the yeast Saccharomyces cerevisiae terminate in a tract of simple-sequence DNA [poly(C1-3A)] that is several hundred base pairs long. We describe the identification of mutant yeast strains that have telomeric tracts that are shorter than normal. A genetic analysis of these strains indicates that these short telomeres are the result of single nuclear recessive mutations and that these mutations can be classified into two different complementation groups. The full expression of the mutant phenotype shows a very long lag (approximately equal to 150 cell divisions). From our analysis of these mutants as well as other data, we suggest that the duplication of the telomeric poly(C1-3A) tract involves two processes, semiconservative replication and untemplated terminal addition of nucleotides.


Assuntos
Cromossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Sequência de Bases , Replicação do DNA , DNA Fúngico/genética , Proteínas Fúngicas/genética , Genes Recessivos , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Fenótipo , Proteínas Serina-Treonina Quinases , Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae
20.
Genes Dev ; 10(11): 1310-26, 1996 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-8647430

RESUMO

One of the central requirements for eukaryotic chromosome stability is the maintenance of the simple sequence tracts at telomeres. In this study, we use genetic and physical assays to reveal the nature of a novel mechanism by which telomere length is controlled. This mechanism, telomeric rapid deletion (TRD), is capable of reducing elongated telomeres to wild-type tract length in an apparently single-division process. The deletion of telomeres to wild-type lengths is stimulated by the hpr1 mutation, suggesting that TRD in these cells is the consequence of an intrachromatid pathway. Paradoxically, TRD is also dependent on the lengths of the majority of nonhomologous telomeres in the cell. Defects in the chromatin-organizing protein Sir3p increase the rate of hpr1-induced rapid deletion and specifically change the spectrum of rapid deletion events. We propose a model in which interactions among telosomes of nonhomologous chromosomes form higher order complexes that restrict the access of the intrachromatid recombination machinery to telomeres. This mechanism of size control is distinct from that mediated through telomerase and is likely to maintain telomere length within a narrow distribution.


Assuntos
Saccharomyces cerevisiae/genética , Telômero , Deleção Cromossômica , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA , Proteínas de Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA