Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34577456

RESUMO

A novel microfluidic optical cell is presented that enables simultaneous measurement of both light absorbance and fluorescence on microlitre volumes of fluid. The chip design is based on an inlaid fabrication technique using clear and opaque poly(methyl methacrylate) or PMMA to create a 20.2 mm long optical cell. The inlaid approach allows fluid interrogation with minimal interference from external light over centimeter long path lengths. The performance of the optical cell is evaluated using a stable fluorescent dye: rhodamine B. Excellent linear relationships (R2 > 0.99) are found for both absorbance and fluorescence over a 0.1-10 µM concentration range. Furthermore, the molar attenuation spectrum is accurately measured over the range 460-550 nm. The approach presented here is applicable to numerous colorimetric- or fluorescence-based assays and presents an important step in the development of multipurpose lab-on-chip sensors.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Corantes Fluorescentes , Polimetil Metacrilato
2.
ACS Sens ; 8(1): 344-352, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36602412

RESUMO

We have designed, built, tested, and deployed an autonomous in situ analyzer for seawater total alkalinity. Such analyzers are required to understand the ocean carbon cycle, including anthropogenic carbon dioxide (CO2) uptake and for mitigation efforts via monitoring, reporting, and verification of carbon dioxide removal through ocean alkalinity enhancement. The microfluidic nature of our instrument makes it relatively lightweight, reagent efficient, and amenable for use on platforms that would carry it on long-term deployments. Our analyzer performs a series of onboard closed-cell titrations with three independent stepper-motor driven syringe pumps, providing highly accurate mixing ratios that can be systematically swept through a range of pH values. Temperature effects are characterized over the range 5-25 °C allowing for field use in most ocean environments. Each titration point requires approximately 170 µL of titrant, 830 µL of sample, 460 J of energy, and a total of 105 s for pumping and optical measurement. The analyzer performance is demonstrated through field data acquired at two sites, representing a cumulative 25 days of operation, and is evaluated against laboratory measurements of discrete water samples. Once calibrated against onboard certified reference material, the analyzer showed an accuracy of -0.17 ± 24 µmol kg-1. We further report a precision of 16 µmol kg-1, evaluated on repeated in situ measurements of the aforementioned certified reference material. The total alkalinity analyzer presented here will allow measurements to take place in remote areas over extended periods of time, facilitating affordable observations of a key parameter of the ocean carbon system with high spatial and temporal resolution.


Assuntos
Dióxido de Carbono , Microfluídica , Água do Mar/química
3.
Sci Rep ; 13(1): 5210, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997631

RESUMO

Using environmental DNA (eDNA) to monitor biodiversity in aquatic environments is becoming an efficient and cost-effective alternative to other methods such as visual and acoustic identification. Until recently, eDNA sampling was accomplished primarily through manual sampling methods; however, with technological advances, automated samplers are being developed to make sampling easier and more accessible. This paper describes a new eDNA sampler capable of self-cleaning and multi-sample capture and preservation, all within a single unit capable of being deployed by a single person. The first in-field test of this sampler took place in the Bedford Basin, Nova Scotia, Canada alongside parallel samples taken using the typical Niskin bottle collection and post-collection filtration method. Both methods were able to capture the same aquatic microbial community and counts of representative DNA sequences were well correlated between methods with R[Formula: see text] values ranging from 0.71-0.93. The two collection methods returned the same top 10 families in near identical relative abundance, demonstrating that the sampler was able to capture the same community composition of common microbes as the Niskin. The presented eDNA sampler provides a robust alternative to manual sampling methods, is amenable to autonomous vehicle payload constraints, and will facilitate persistent monitoring of remote and inaccessible sites.


Assuntos
DNA Ambiental , Microbiota , Humanos , DNA Ambiental/genética , Biodiversidade , Filtração , Microbiota/genética , Nova Escócia , Monitoramento Ambiental/métodos , Código de Barras de DNA Taxonômico/métodos
4.
Anal Methods ; 14(1): 22-33, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34874983

RESUMO

In situ sensors are needed to further our understanding of phosphate flux dynamics in marine environments during short term events such as tidal cycles, algae blooms and runoff periods. Here, we present a fully automated in situ phosphate analyzer based on an inlaid microfluidic absorbance cell technology. The microfluidic device employs colorimetric absorbance spectrophotometry, using the phosphomolybdenum blue (PMB) assay modified by the addition of polyvinylpyrrolidone (PVP), to measure phosphate concentrations in seawater. Bench top calibrations were performed with both copper(II) sulfate dye and the PMB assay, as well as temperature sensitivity studies to characterize the sensor's performance in a range of conditions. It achieves a limit of detection of 15.2 nM, a limit of quantification of 50.8 nM, and a high in situ precision with a relative standard deviation of less than 1.5% across three consecutive measurements. Two consecutive field deployments are conducted as assessments for its intended in situ applications. The sensor is first deployed from a pier at a depth of 6 m, with simultaneous bottle samples taken to perform cross-validation. It is next deployed on the Stella Maris testbed, a multi-sensor seabed platform (MSSP), 100 m offshore and 9 m deep in the inlet to the Bedford Basin in Nova Scotia, Canada. Over 300 successful phosphate measurements were acquired, showing the influence of the tidal cycle, and confirming the sensor's viability in observing nutrient flux dynamics with nanomolar variations.


Assuntos
Microfluídica , Fosfatos , Dispositivos Lab-On-A-Chip , Nova Escócia , Fosfatos/análise , Água do Mar
5.
Micromachines (Basel) ; 12(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34442483

RESUMO

Reagent-based colorimetric analyzers often heat the fluid under analysis for improved reaction kinetics, whilst also aiming to minimize energy use per measurement. Here, a novel method of conserving heat energy on such microfluidic systems is presented. Our design reduces heat transfer to the environment by surrounding the heated optical cell on four sides with integral air pockets, thereby realizing an insulated and suspended bridge structure. Our design was simulated in COMSOL Multiphysics and verified in a polymethyl methacrylate (PMMA) device. We evaluate the effectiveness of the insulated design by comparing it to a non-insulated cell. For temperatures up to 55 °C, the average power consumption was reduced by 49.3% in the simulation and 40.2% in the experiment. The designs were then characterized with the vanadium and Griess reagent assay for nitrate at 35 °C. Nitrate concentrations from 0.25 µM to 50 µM were tested and yielded the expected linear relationship with a limit of detection of 20 nM. We show a reduction in energy consumption from 195 J to 119 J per 10 min measurement using only 4 µL of fluid. Efficient heating on-chip will have broad applicability to numerous colorimetric assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA