RESUMO
This study introduced a depth-sensing-based approach with robust algorithms for tracking relative morphological changes in the chests of patients undergoing physical therapy. The problem that was addressed was the periodic change in morphological parameters induced by breathing, and since the recording was continuous, the parameters were extracted for the moments of maximum and minimum volumes of the chest (inspiration and expiration moments), and analyzed. The parameters were derived from morphological transverse cross-sections (CSs), which were extracted for the moments of maximal and minimal depth variations, and the reliability of the results was expressed through the coefficient of variation (CV) of the resulting curves. Across all subjects and levels of observed anatomy, the mean CV for CS depth values was smaller than 2%, and the mean CV of the CS area was smaller than 1%. To prove the reproducibility of measurements (extraction of morphological parameters), 10 subjects were recorded in two consecutive sessions with a short interval (2 weeks) where no changes in the monitored parameters were expected and statistical methods show that there was no statistically significant difference between the sessions, which confirms the reproducibility hypothesis. Additionally, based on the representative CSs for inspiration and expirations moments, chest mobility in quiet breathing was examined, and the statistical test showed no difference between the two sessions. The findings justify the proposed algorithm as a valuable tool for evaluating the impact of rehabilitation exercises on chest morphology.
Assuntos
Algoritmos , Paralisia Cerebral , Tórax , Humanos , Paralisia Cerebral/fisiopatologia , Paralisia Cerebral/patologia , Criança , Masculino , Tórax/diagnóstico por imagem , Feminino , Respiração , Reprodutibilidade dos TestesRESUMO
In the context of recent climate change, temperature-attributable mortality has become an important public health threat worldwide. A large number of studies in Europe have identified a relationship between temperature and mortality, while only a limited number of scholars provided evidence for Serbia. In order to provide more evidence for better management of health resources at the regional and local level, this study aims to assess the impact of summer temperature on the population in Serbia, using daily average temperature (Ta) and mortality (CDR (crude death rate) per 100,000). The analysis was done for five areas (Belgrade, Novi Sad, Nis, Loznica, and Vranje), covering the summer (June-August) period of 2001-2015. In order to quantify the Ta-related CDR, a generalized additive model (GAM) assuming a quasi-Poisson distribution with log as the link function was used. Five regression models were constructed, for each area, revealing a statistically significant positive relationship between Ta and CDR in four areas. The effect of Ta on CDR was defined as the relative risk (RR), which was obtained as the exponential regression coefficient of the models. RR indicates that a 1 °C increase in Ta at lag0 was associated with an increase in CDR of 1.7% for Belgrade, Novi Sad, and Nis and 2% for Loznica. The model for Vranje did not quantify a statistically significant increase in CDR due to Ta (RR=1.006, 95% CI 0.991-1.020). Similar results were confirmed for gender, with a slightly higher risk for women. Analysis across lag structure showed different exposure, but the highest effect of Ta mainly occurs over the short term and persists for 3 days.
Assuntos
Mortalidade , Humanos , Feminino , Temperatura , Sérvia/epidemiologia , Estações do Ano , Risco , Distribuição de PoissonRESUMO
Increased temperature risk in cities threatens the health and well-being of urban population and is fueled by climate change and intensive urbanization. Consequently, further steps must be taken for assessing temperature conditions in cities and their association with public health, in order to improve public health prevention at local or regional level. This study contributes to solving the problems by analyzing the connection between extreme temperatures and the tendencies of all-cause hospital admissions. The analyses used (a) 1-h air temperature data, and (b) daily data of all-cause hospital admissions. The datasets include the summer period (June, July, August) for the years 2016 and 2017. We tested the effects of two temperature indices, day-to-day change in maximum temperature - Tmax,c and daily temperature range - Tr, with all-cause hospital admission subgroups, such as all-cause cases - Ha, hospital admissions in the population below 65 - Ha<65, and hospital admissions in the population aged 65 and over - Ha≥65. The results show the highest values of Ha when Tmax,c is between 6 and 10 °C. Therefore, more intensive hospital admissions can be expected when Tmax increases from day-to-day (positive values of Tmax,c), and it is more visible for Ha and Ha<65 (1 °C = 1% increase in hospital admissions). Also, Tr values between 10 °C and 14 °C cause an increase in the number of hospital admissions, and it is more noticeable for Ha≥65.
Assuntos
Hospitalização , Hospitais , Humanos , Temperatura , Cidades , SérviaRESUMO
A comprehensive analysis of air temperature (Ta) dynamics in "local climate zones" (LCZs) of Novi Sad (Serbia) was based on measurements from 17 stations during 3 years. Hourly changes of Ta, cooling rates (CR), heating rates (HR), and urban heat island (UHI) intensity were assessed on seasonal and annual level and during heat wave (HW) and cold wave (CW) periods. Substantial differences are observed for minimum (Tmin) and mean temperatures (Tmean) between LCZs. Two-phase nocturnal cooling was recognized with the first cooling phase characterized by intensive LCZ dependent cooling starting at 1-3 h before sunset and lasting until 3-4 h after sunset. The second cooling phase lasts until sunrise and is characterized by less intensive and LCZ nondependent cooling. The most intensive cooling (CRpeak) was observed in first cooling phase of HW and ranged from - 1.6 °C h-1 in street canyon (LCZ 2) to - 3.9 °C h-1 in forest (LCZ A). Furthermore, a new cooling indicator (CRtotal) was introduced. Due to cooling differences, the most intensive UHI of 5.5 °C was noticed between LCZs 2 and A at sunset + 1 h during HW. Two-phase diurnal heating was also recognized in LCZs with the first heating phase characterized by intensive LCZ dependent heating starting at sunrise and lasting until 4-7 h afterwards. The most intensive heating (HRpeak) ranged from 2.0 °C h-1 in street canyon to 3.0 °C h-1 in industrial area (LCZ 8) during HW. The second heating phase lasts until sunset and is characterized by less intensive heating and smaller HR differences between LCZs.
Assuntos
Clima , Temperatura Alta , Cidades , Sérvia , TemperaturaRESUMO
Cyanobacteria produce toxic metabolites known as cyanotoxins. These bioactive compounds can cause acute poisoning, and some of them may promote cancer through chronic exposure. Direct ingestion of and contact with contaminated water is one of the many exposure routes to cyanotoxins. The aim of this article was to review the incidence of 13 cancers during a 10-year period in Serbia and to assess whether there is a correlation between the cancer incidences and cyanobacterial bloom occurrence in reservoirs for drinking water supply. The types of cancers were chosen and subjected to epidemiological analyses utilizing previously published data. Based on the epidemiological and statistical analysis, the group of districts in which the incidences of cancers are significant, and may be considered as critical, include Nisavski, Toplicki, and Sumadijski district. A significantly higher incidence of ten cancers was observed in the three critical districts as compared to the remaining 14 districts in Central Serbia. These elevated incidences of cancer include: brain cancer, heart, mediastinum and pleura cancer, ovary cancer, testicular cancer, gastric cancer, colorectal cancer, retroperitoneum and peritoneum cancer, leukemia, malignant melanoma of skin, and primary liver cancer. In addition, the mean incidence of five chosen cancers was the highest in the three critical regions, then in the rest of Central Serbia, while the lowest values were recorded in Vojvodina. Persistent and recurrent cyanobacterial blooms occur during summer months in reservoirs supplying water to waterworks in the three critical districts. People in Central Serbia mainly use surface water as water supply (but not all the water bodies are blooming) while in Vojvodina region (control region in this study) only groundwater is used. Among the 14 "noncritical" districts, reservoirs used for drinking water supply have been affected by recurrent cyanobacterial blooms in two districts (Rasinski and Zajecarski), but the waterworks in these districts have been performing ozonation for more than 30 years. We propose that the established statistical differences of cancer incidences in Serbia could be related to drinking water quality, which is affected by cyanobacterial blooms in drinking water reservoirs in certain districts. However, more detailed research is needed regarding cyanobacterial secondary metabolites as risk factors in tumor promotion and cancerogenesis in general.
Assuntos
Toxinas Bacterianas/toxicidade , Cianobactérias/crescimento & desenvolvimento , Eutrofização , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Neoplasias/epidemiologia , Poluentes Químicos da Água/toxicidade , Toxinas de Cianobactérias , Humanos , Incidência , Neoplasias/induzido quimicamente , Sérvia/epidemiologia , Microbiologia da ÁguaRESUMO
This study reports how adding a membrane filter (0.45-µm cellulose nitrate filter) between a glass fibre filter and the solid phase extraction (SPE) cartridge affected the GC/MS analysis of 48 emerging organic micropollutants in wastewater. Most of them are widely used as active pharmaceuticals, cosmetic and packaging material ingredients including classes of parabens, benzophenones and bisphenols among other chemicals tested. A high artificial organic carbon (OC) content in wastewater (DOC = 280 ± 14 mg/L) was investigated to gain insight into micropollutants/colloidal OC filter cake interactions. The results show that even with the use of matrix-matched calibration, the introduction of a second (membrane) filtration step can affect the analysis. Both positive, negative and no effects on the theoretical concentrations calculated from the calibration curves with and without additional filtration were observed. Positive effects on the concentration for the same analyte peak area relative to its surrogate standard were the consequence of a reduced signal for the same concentration, while the negative effects are the consequence of increasing signal for the same concentration. Effect types were dependent on the concentration and the nature of the analytes. Results show that bisphenols and parabens significantly interact with colloidal OC. Statistical analysis of molecular descriptor distribution with effect type showed that micropollutants that have a stronger interaction with colloidal OC have significantly higher ability to act as hydrogen bond donors (HBD) and have larger molar volume (MV). All compounds that experienced either positive or negative effects have a significantly higher median logD. However, further exploration within a single class of compounds (parabens, benzophenones and bisphenols) revealed that selected descriptors are unrelated to an effect type. Pearson's correlations showed that a correlation exists for certain concentration levels and groups of compounds between a negative effect and MV and logD and a positive effect with MV, MW and rotatable bond (RB) count.