Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(29): 11969-11976, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32293091

RESUMO

One-dimensional (1D) nanostructured oxides are proposed as excellent electron transport materials (ETMs) for perovskite solar cells (PSCs); however, experimental evidence is lacking. A facile hydrothermal approach was employed to grow highly oriented anatase TiO2 nanopyramid arrays and demonstrate their application in PSCs. The oriented TiO2 nanopyramid arrays afford sufficient contact area for electron extraction and increase light transmission. Moreover, the nanopyramid array/perovskite system exhibits an oriented electric field that can increase charge separation and accelerate charge transport, thereby suppressing charge recombination. The anatase TiO2 nanopyramid array-based PSCs deliver a champion power conversion efficiency of approximately 22.5 %, which is the highest power conversion efficiency reported to date for PSCs consisting of 1D ETMs. This work demonstrates that the rational design of 1D ETMs can achieve PSCs that perform as well as typical mesoscopic and planar PSCs.

2.
Nanomicro Lett ; 15(1): 177, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428261

RESUMO

Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.

3.
RSC Adv ; 8(37): 20982-20989, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542345

RESUMO

Planar-structured perovskite solar cells (PSCs) have received tremendous attention due to their high power conversion efficiency (PCE), simple process and low-cost fabrication. A compact thin film of electron transport materials (ETMs) plays a key role in these PSCs. However, the traditional ETMs of PSCs, TiO2 nanoparticulate films, suffer from low conductivity and high trap state density. Herein, we exploited TiO2 nanospindles as a compact ETM in planar PSCs for the first time, and achieved an efficient device with a PCE of 19.1%. By optimization with Nb doping into the TiO2 nanospindles, the PCE of the PSC was further improved up to 20.8%. The carrier transfer and collection efficiency were significantly improved after Nb5+ doping, revealed by Mott-Schottky (MS) analysis, space charge limited current (SCLC), photoluminence (PL), time-resolved photoluminence (TRPL) spectra, electrochemical impedance spectra (EIS) and so forth. Moreover, the hysteresis behavior was effectively inhibited and the stability was significantly enhanced. This work may provide a new avenue towards the rational design of efficient ETMs for perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA