Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 229(3): 680-690, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37878754

RESUMO

Most patients with COVID-19 in the intensive care unit develop an acute respiratory distress syndrome characterized by severe hypoxemia, decreased lung compliance, and high vascular permeability. Activation of the complement system is a hallmark of moderate and severe COVID-19, with abundant deposition of complement proteins in inflamed tissue and on the endothelium during COVID-19. Using a transgenic mouse model of SARS-CoV-2 infection, we assessed the therapeutic utility of an inhibitory antibody (HG4) targeting MASP-2, a key enzyme in the lectin pathway. Treatment of infected mice with HG4 reduced the disease severity score and improved survival vs mice that received an isotype control antibody. Administration of HG4 significantly reduced the lung injury score, including alveolar inflammatory cell infiltration, alveolar edema, and alveolar hemorrhage. The ameliorating effect of MASP-2 inhibition on the severity of COVID-19 pathology is reflected by a significant reduction in the proinflammatory activation of brain microglia in HG4-treated mice.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , SARS-CoV-2/metabolismo , Ativação do Complemento , Modelos Animais de Doenças , Proteínas do Sistema Complemento
2.
Infect Immun ; 87(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30323030

RESUMO

Complement is a critical component of antimicrobial immunity. Various complement regulatory proteins prevent host cells from being attacked. Many pathogens have acquired the ability to sequester complement regulators from host plasma to evade complement attack. We describe here how Streptococcus pneumoniae adopts a strategy to prevent the formation of the C3 convertase C4bC2a by the rapid conversion of surface bound C4b and iC4b into C4dg, which remains bound to the bacterial surface but no longer forms a convertase complex. Noncapsular virulence factors on the pneumococcus are thought to facilitate this process by sequestering C4b-binding protein (C4BP) from host plasma. When S. pneumoniae D39 was opsonized with human serum, the larger C4 activation products C4b and iC4b were undetectable, but the bacteria were liberally decorated with C4dg and C4BP. With targeted deletions of either PspA or PspC, C4BP deposition was markedly reduced, and there was a corresponding reduction in C4dg and an increase in the deposition of C4b and iC4b. The effect was greatest when PspA and PspC were both knocked out. Infection experiments in mice indicated that the deletion of PspA and/or PspC resulted in the loss of bacterial pathogenicity. Recombinant PspA and PspC both bound serum C4BP, and both led to increased C4b and reduced C4dg deposition on S. pneumoniae D39. We conclude that PspA and PspC help the pneumococcus to evade complement attack by binding C4BP and so inactivating C4b.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína de Ligação ao Complemento C4b/metabolismo , Complemento C4b/antagonistas & inibidores , Evasão da Resposta Imune , Streptococcus pneumoniae/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Infecções Pneumocócicas/microbiologia , Ligação Proteica , Streptococcus pneumoniae/patogenicidade
3.
Proc Natl Acad Sci U S A ; 111(14): 5301-6, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706855

RESUMO

Modern medicine has established three central antimicrobial therapeutic concepts: vaccination, antibiotics, and, recently, the use of active immunotherapy to enhance the immune response toward specific pathogens. The efficacy of vaccination and antibiotics is limited by the emergence of new pathogen strains and the increased incidence of antibiotic resistance. To date, immunotherapy development has focused mainly on cytokines. Here we report the successful therapeutic application of a complement component, a recombinant form of properdin (Pn), with significantly higher activity than native properdin, which promotes complement activation via the alternative pathway, affording protection against N. menigitidis and S. pneumoniae. In a mouse model of infection, we challenged C57BL/6 WT mice with N. menigitidis B-MC58 6 h after i.p. administration of Pn (100 µg/mouse) or buffer alone. Twelve hours later, all control mice showed clear symptoms of infectious disease while the Pn treated group looked healthy. After 16 hours, all control mice developed sepsis and had to be culled, while only 10% of Pn treated mice presented with sepsis and recoverable levels of live Meningococci. In a parallel experiment, mice were challenged intranasally with a lethal dose of S. pneumoniae D39. Mice that received a single i.p. dose of Pn at the time of infection showed no signs of bacteremia at 12 h postinfection and had prolonged survival times compared with the saline-treated control group (P < 0.0001). Our findings show a significant therapeutic benefit of Pn administration and suggest that its antimicrobial activity could open new avenues for fighting infections caused by multidrug-resistant neisserial or streptococcal strains.


Assuntos
Infecções Meningocócicas/prevenção & controle , Neisseria meningitidis/isolamento & purificação , Infecções Pneumocócicas/prevenção & controle , Properdina/farmacologia , Animais , Vacinas Bacterianas/administração & dosagem , Relação Dose-Resposta a Droga , Infecções Meningocócicas/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/farmacologia
4.
PLoS Pathog ; 8(7): e1002793, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792067

RESUMO

The complement system plays a key role in host defense against pneumococcal infection. Three different pathways, the classical, alternative and lectin pathways, mediate complement activation. While there is limited information available on the roles of the classical and the alternative activation pathways of complement in fighting streptococcal infection, little is known about the role of the lectin pathway, mainly due to the lack of appropriate experimental models of lectin pathway deficiency. We have recently established a mouse strain deficient of the lectin pathway effector enzyme mannan-binding lectin associated serine protease-2 (MASP-2) and shown that this mouse strain is unable to form the lectin pathway specific C3 and C5 convertases. Here we report that MASP-2 deficient mice (which can still activate complement via the classical pathway and the alternative pathway) are highly susceptible to pneumococcal infection and fail to opsonize Streptococcus pneumoniae in the none-immune host. This defect in complement opsonisation severely compromises pathogen clearance in the lectin pathway deficient host. Using sera from mice and humans with defined complement deficiencies, we demonstrate that mouse ficolin A, human L-ficolin, and collectin 11 in both species, but not mannan-binding lectin (MBL), are the pattern recognition molecules that drive lectin pathway activation on the surface of S. pneumoniae. We further show that pneumococcal opsonisation via the lectin pathway can proceed in the absence of C4. This study corroborates the essential function of MASP-2 in the lectin pathway and highlights the importance of MBL-independent lectin pathway activation in the host defense against pneumococci.


Assuntos
Ativação do Complemento , Imunidade Inata , Lectinas/imunologia , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Animais , Colectinas/metabolismo , Complemento C4/imunologia , Humanos , Lectinas/metabolismo , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/deficiência , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Opsonizantes , Receptores de Reconhecimento de Padrão/metabolismo , Ficolinas
5.
Proc Natl Acad Sci U S A ; 108(18): 7523-8, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21502512

RESUMO

Complement research experienced a renaissance with the discovery of a third activation route, the lectin pathway. We developed a unique model of total lectin pathway deficiency, a mouse strain lacking mannan-binding lectin-associated serine protease-2 (MASP-2), and analyzed the role of MASP-2 in two models of postischemic reperfusion injury (IRI). In a model of transient myocardial IRI, MASP-2-deficient mice had significantly smaller infarct volumes than their wild-type littermates. Mice deficient in the downstream complement component C4 were not protected, suggesting the existence of a previously undescribed lectin pathway-dependent C4-bypass. Lectin pathway-mediated activation of C3 in the absence of C4 was demonstrated in vitro and shown to require MASP-2, C2, and MASP-1/3. MASP-2 deficiency also protects mice from gastrointestinal IRI, as do mAb-based inhibitors of MASP-2. The therapeutic effects of MASP-2 inhibition in this experimental model suggest the utility of anti-MASP-2 antibody therapy in reperfusion injury and other lectin pathway-mediated disorders.


Assuntos
Trato Gastrointestinal/patologia , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Miocárdio/patologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Complemento C4/deficiência , Feminino , Serina Proteases Associadas a Proteína de Ligação a Manose/deficiência , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Camundongos , Camundongos Knockout , Camundongos Mutantes , Microscopia , Traumatismo por Reperfusão/imunologia
6.
Front Immunol ; 14: 1192767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325666

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening disorder with a high rate of mortality. Complement activation in ARDS initiates a robust inflammatory reaction that can cause progressive endothelial injury in the lung. Here, we tested whether inhibition of the lectin pathway of complement could reduce the pathology and improve the outcomes in a murine model of LPS-induced lung injury that closely mimics ARDS in human. In vitro, LPS binds to murine and human collectin 11, human MBL and murine MBL-A, but not to C1q, the recognition subcomponent of the classical pathway. This binding initiates deposition of the complement activation products C3b, C4b and C5b-9 on LPS via the lectin pathway. HG-4, a monoclonal antibody that targets MASP-2, a key enzyme in the lectin pathway, inhibited lectin pathway functional activity in vitro, with an IC50 of circa 10nM. Administration of HG4 (5mg/kg) in mice led to almost complete inhibition of the lectin pathway activation for 48hrs, and 50% inhibition at 60hrs post administration. Inhibition of the lectin pathway in mice prior to LPS-induced lung injury improved all pathological markers tested. HG4 reduces the protein concentration in bronchoalveolar lavage fluid (p<0.0001) and levels of myeloid peroxide (p<0.0001), LDH (p<0.0001), TNFα and IL6 (both p<0.0001). Lung injury was significantly reduced (p<0.001) and the survival time of the mice increased (p<0.01). From the previous findings we concluded that inhibition of the lectin pathway has the potential to prevent ARDS pathology.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Humanos , Camundongos , Lectinas , Lipopolissacarídeos/toxicidade , Ativação do Complemento , Síndrome do Desconforto Respiratório/induzido quimicamente , Complemento C3b/metabolismo
7.
Front Immunol ; 13: 841759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572551

RESUMO

A high incidence of secondary Klebsiella pneumoniae and Staphylococcus aureus infection were observed in patients with severe COVID-19. The cause of this predisposition to infection is unclear. Our data demonstrate consumption of complement in acute COVID-19 patients reflected by low levels of C3, C4, and loss of haemolytic activity. Given that the elimination of Gram-negative bacteria depends in part on complement-mediated lysis, we hypothesised that secondary hypocomplementaemia is rendering the antibody-dependent classical pathway activation inactive and compromises serum bactericidal activity (SBA). 217 patients with severe COVID-19 were studied. 142 patients suffered secondary bacterial infections. Klebsiella species were the most common Gram-negative organism, found in 58 patients, while S. aureus was the dominant Gram-positive organism found in 22 patients. Hypocomplementaemia was observed in patients with acute severe COVID-19 but not in convalescent survivors three months after discharge. Sera from patients with acute COVID-19 were unable to opsonise either K. pneumoniae or S. aureus and had impaired complement-mediated killing of Klebsiella. We conclude that hyperactivation of complement during acute COVID-19 leads to secondary hypocomplementaemia and predisposes to opportunistic infections.


Assuntos
COVID-19 , Infecções Estafilocócicas , Proteínas do Sistema Complemento , Doenças da Deficiência Hereditária de Complemento , Humanos , Klebsiella pneumoniae , Staphylococcus aureus
8.
Front Immunol ; 12: 714511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290717

RESUMO

Early and persistent activation of complement is considered to play a key role in the pathogenesis of COVID-19. Complement activation products orchestrate a proinflammatory environment that might be critical for the induction and maintenance of a severe inflammatory response to SARS-CoV-2 by recruiting cells of the cellular immune system to the sites of infection and shifting their state of activation towards an inflammatory phenotype. It precedes pathophysiological milestone events like the cytokine storm, progressive endothelial injury triggering microangiopathy, and further complement activation, and causes an acute respiratory distress syndrome (ARDS). To date, the application of antiviral drugs and corticosteroids have shown efficacy in the early stages of SARS-CoV-2 infection, but failed to ameliorate disease severity in patients who progressed to severe COVID-19 pathology. This report demonstrates that lectin pathway (LP) recognition molecules of the complement system, such as MBL, FCN-2 and CL-11, bind to SARS-CoV-2 S- and N-proteins, with subsequent activation of LP-mediated C3b and C4b deposition. In addition, our results confirm and underline that the N-protein of SARS-CoV-2 binds directly to the LP- effector enzyme MASP-2 and activates complement. Inhibition of the LP using an inhibitory monoclonal antibody against MASP-2 effectively blocks LP-mediated complement activation. FACS analyses using transfected HEK-293 cells expressing SARS-CoV-2 S protein confirm a robust LP-dependent C3b deposition on the cell surface which is inhibited by the MASP-2 inhibitory antibody. In light of our present results, and the encouraging performance of our clinical candidate MASP-2 inhibitor Narsoplimab in recently published clinical trials, we suggest that the targeting of MASP-2 provides an unsurpassed window of therapeutic efficacy for the treatment of severe COVID-19.


Assuntos
COVID-19/sangue , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Lectinas/sangue , Insuficiência Renal Crônica/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Biomarcadores/sangue , COVID-19/complicações , COVID-19/patologia , COVID-19/fisiopatologia , Estudos de Coortes , Proteínas do Sistema Complemento/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/virologia , Índice de Gravidade de Doença , População Branca
10.
Mol Immunol ; 40(10): 709-16, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14644096

RESUMO

A reliable way to visualise the state of microglial activation is to monitor the microglial gene expression profile. Microglia are the only CNS resident cells that synthesise C1q, the recognition sub-component of the classical complement pathway, in vivo. C1q biosynthesis in resting ramified microglia is often low, but it increases dramatically in activated microglia. In this study, the expression of C1q was used to monitor microglial activation at all stages of 3-chloropropanediol-induced neurotoxicity, a new model of blood-brain barrier (BBB) breakdown. In rats, 3-chloropropanediol produces very focused lesions in the brain, characterised by early astrocyte swelling and loss, followed by neuronal death and barrier dysfunction. Using in situ hybridisation, immunohistochemistry, and real-time RT-PCR, we found that increased C1q biosynthesis and microglial activation precede BBB dysfunction by at least 18 and peak 48 h after injection of 3-chloropropanediol, which coincides with the onset of active haemorrhage. Microglial activation is biphasic; an early phase of global activation is followed by a later phase in which microglial activation becomes increasingly focused in the lesions. During the early phase, expression of the pro-inflammatory mediators interleukin-1beta (IL1beta), tumour necrosis factor alpha (TNFalpha) and early growth response-1 (Egr-1) increased in parallel with C1q, but was restricted to the lesions. Expression of C1q (but not IL1beta, TNFalpha or Egr-1) remains high after BBB function is restored, and is accompanied by late up-regulation of the C1q-associated serine proteases, C1r and C1s, suggesting that microglial biosynthesis of the activation complex of the classical pathway may support the removal of cell debris by activation of complement.


Assuntos
Barreira Hematoencefálica/imunologia , Complemento C1q/biossíntese , Proteínas Imediatamente Precoces , Microglia/imunologia , Animais , Sequência de Bases , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/metabolismo , Complemento C1q/genética , DNA Complementar/genética , Proteínas de Ligação a DNA/genética , Proteína 1 de Resposta de Crescimento Precoce , Hibridização In Situ , Interleucina-1/genética , Masculino , Microglia/efeitos dos fármacos , Microglia/fisiologia , Modelos Neurológicos , Neurotoxinas/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/genética , alfa-Cloridrina/toxicidade
11.
Am J Trop Med Hyg ; 92(2): 320-4, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25548381

RESUMO

Trypanosoma cruzi is the causative agent of Chagas' disease, a chronic illness affecting 10 million people around the world. The complement system plays an important role in fighting microbial infections. The recognition molecules of the lectin pathway of complement activation, mannose-binding lectin (MBL), ficolins, and CL-11, bind to specific carbohydrates on pathogens, triggering complement activation through MBL-associated serine protease-2 (MASP-2). Previous in vitro work showed that human MBL and ficolins contribute to T. cruzi lysis. However, MBL-deficient mice are only moderately compromised in their defense against the parasite, as they may still activate the lectin pathway through ficolins and CL-11. Here, we assessed MASP-2-deficient mice, the only presently available mouse line with total lectin pathway deficiency, for a phenotype in T. cruzi infection. Total absence of lectin pathway functional activity did not confer higher susceptibility to T. cruzi infection, suggesting that it plays a minor role in the immune response against this parasite.


Assuntos
Doença de Chagas/imunologia , Serina Proteases Associadas a Proteína de Ligação a Manose/deficiência , Trypanosoma cruzi , Animais , Doença de Chagas/etiologia , Ativação do Complemento/fisiologia , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Carga Parasitária , Trypanosoma cruzi/imunologia
12.
Int Immunopharmacol ; 2(4): 415-22, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11962721

RESUMO

Inhibition of the complement system is potentially therapeutic in diseases where uncontrolled or overshooting complement activation plays a significant role in the pathogenesis of the disorder. Calreticulin (CRT) is a multifunctional protein whose cell-surface form (ectocalreticulin) is reported to be a C1q receptor. A 124-residue domain within CRT, the S-domain, binds to C1q, prevents the formation of C1 and so inhibits activation of the classical pathway. To assess the usefulness of CRT S-domain as a complement inhibitor, recombinant S-domain was expressed, radiolabeled, and the fate of the radiolabeled peptide followed in vivo. In rats, CRT-S-domain shows a half-life of 1.21 +/- 0.34 and 40.5 +/- 2.7 min in the distribution and elimination phases from plasma, respectively. The peptide remains largely intact, and is cleared from the circulation by the kidneys, where it accumulates in the proximal convoluted tubules, but is not excreted. Much smaller amounts of the peptide accumulate in other tissues, and essentially none crosses the blood-brain barrier.


Assuntos
Calreticulina/farmacologia , Calreticulina/farmacocinética , Proteínas Inativadoras do Complemento 1/farmacocinética , Via Clássica do Complemento/efeitos dos fármacos , Animais , Barreira Hematoencefálica , Calreticulina/química , Proteínas Inativadoras do Complemento 1/química , Proteínas Inativadoras do Complemento 1/farmacologia , Meia-Vida , Radioisótopos do Iodo , Masculino , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
13.
Immunobiology ; 217(2): 272-80, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22070931

RESUMO

Pseudomonas aeruginosa remains one of the major clinical pathogens that burden immuno-compromised patients and patients with cystic fibrosis. The present study aimed to define the role of the lectin pathway of complement in the immune-defence against P. aeruginosa in a mouse model of invasive pneumonia. Using in vitro assays specific for each of the three complement pathways, we demonstrate that some strains of P. aeruginosa bind lectin pathway recognition sub-components and initiate complement activation in a lectin pathway-specific mode. All of the tested strains activated complement via classical and alternative pathways. We assessed the importance of lectin pathway activation in fighting P. aeruginosa infections by testing a lectin pathway activating strain in a mouse model of intra-nasal infection. MASP-2 (mannan binding lectin associated serine protease-2) deficient mice, which have no lectin pathway activity, had no significant survival disadvantage compared to wild type littermates (72.7% and 81.8% survival, respectively, p=0.48). Likewise, no difference in opsonising activity was seen between MASP-2 sufficient and MASP-2 deficient mouse sera. Moreover, cytokine expression profiles in the lungs of WT mice and MASP-2-/- mice were similar throughout the course of P. aeruginosa infection. We conclude that the lectin pathway does not play an essential role in fighting P. aeruginosa infection in mice.


Assuntos
Lectinas/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Complemento C1q/imunologia , Complemento C4b/imunologia , Via Alternativa do Complemento/imunologia , Via Clássica do Complemento/imunologia , Citocinas/metabolismo , Lectinas/genética , Lectinas/imunologia , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos/imunologia , Fagocitose/imunologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , RNA Mensageiro/metabolismo
14.
Immunobiology ; 216(3): 379-85, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20691496

RESUMO

Schistosomiasis is traditionally diagnosed by microscopic detection of ova in stool samples, but this method is labour intensive and its sensitivity is limited by low and variable egg secretion in many patients. An alternative is an ELISA using Schistosoma mansoni soluble egg antigen (SEA) to detect anti-schistosome antibody in patient samples. SEA is a good diagnostic marker in non-endemic regions but is of limited value in endemic regions, mainly because of its high cost and limited specificity. Here we assess seven novel antigens for the detection of S. mansoni antibody in an endemic region (the Northern Nile Delta). Using recombinant S. mansoni calreticulin (CRT) and fragments thereof, anti-CRT antibodies were detected in the majority of 97 patients sera. The diagnostic value of some of these antigens was, however, limited by the presence of cross-reacting antibody in the healthy controls, even those recruited in non-endemic areas. Cercarial transformation fluid (CTF), a supernatant that contains soluble material released by the cercariae upon transformation to the schistosomula, is cheaper and easier to produce than SEA. An ELISA using CTF as the detection antigen had a sensitivity of 89.7% and an estimated specificity of 100% when used in non-endemic regions, matching the performance of the established SEA ELISA. CTF was substantially more specific than SEA for diagnosis in the endemic region, and less susceptible than SEA to cross-reacting antibody in the sera of controls with other protozoan and metazoan infections.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Calreticulina/imunologia , Cercárias/imunologia , Proteínas de Helminto/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/diagnóstico , Esquistossomose mansoni/imunologia , Animais , Antígenos de Helmintos/imunologia , Calreticulina/genética , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Proteínas Recombinantes , Sensibilidade e Especificidade , Testes Sorológicos/métodos
15.
J Immunol ; 177(12): 8626-32, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17142762

RESUMO

Mannose-binding lectin (MBL) and ficolins are pattern recognition proteins acting in innate immunity, and they trigger the activation of the lectin complement pathway through MBL-associated serine proteases (MASPs). Upon activation of the lectin pathway, MASP-2 cleaves C4 and C2. A truncated form of MASP-2, named small MBL-associated protein (sMAP), is also associated with MBL/ficolin-MASP complexes. To clarify the role of sMAP, we have generated sMAP-deficient (sMAP(-/-)) mice by targeted disruption of the sMAP-specific exon. Because of the gene disruption, the expression level of MASP-2 was also decreased in sMAP(-/-) mice. When recombinant sMAP (rsMAP) and recombinant MASP-2 (rMASP-2) reconstituted the MBL-MASP-sMAP complex in deficient serum, the binding of these recombinant proteins to MBL was competitive, and the C4 cleavage activity of the MBL-MASP-sMAP complex was restored by the addition of rMASP-2, whereas the addition of rsMAP attenuated the activity. Therefore, MASP-2 is essential for the activation of C4 and sMAP plays a regulatory role in the activation of the lectin pathway.


Assuntos
Lectina de Ligação a Manose da Via do Complemento/imunologia , Serina Proteases Associadas a Proteína de Ligação a Manose/fisiologia , Animais , Complemento C4/metabolismo , Hidrólise , Imunidade Inata , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Camundongos , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo
16.
J Immunol ; 175(10): 6846-51, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16272342

RESUMO

Mannan-binding lectin (MBL) initiates complement activation by binding to arrays of carbohydrates on the surfaces of pathogenic microorganisms and activating MBL-associated serine proteases (MASPs). Separate point mutations to the collagenous domain of human MBL are associated with immunodeficiency, caused by reduced complement activation by the variant MBLs as well as by lower serum MBL concentrations. In the work reported here, we have used the well characterized rat lectin pathway to analyze the molecular and functional defects associated with two of the variant proteins. Mutations Gly25 --> Asp and Gly28 --> Glu create comparable structural changes in rat MBL but the G28E variant activates complement >10-fold less efficiently than the G25D variant, which in turn has approximately 7-fold lower activity than wild-type MBL. Analysis of mutant MBL . MASP-2 complexes assembled from recombinant components shows that reduced complement activation by both mutant MBLs is caused by failure to activate MASP-2 efficiently on binding to a mannan-coated surface. Disruption of MBL-MASP-2 interactions as well as to changes in oligomeric structure and reduced binding to carbohydrate ligands compared with wild-type MBL probably account for the intermediate phenotype of the G25D variant. However, carbohydrate binding and MASP-2 activation are ostensibly completely decoupled in complexes assembled from the G28E mutant, such that the rate of MASP-2 activation is no greater than the basal rate of zymogen MASP-2 autoactivation. Analogous molecular defects in human MBL probably combine to create the mutant phenotypes of immunodeficient individuals.


Assuntos
Metabolismo dos Carboidratos , Síndromes de Imunodeficiência/metabolismo , Lectinas de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Substituição de Aminoácidos , Animais , Lectina de Ligação a Manose da Via do Complemento , Cricetinae , Ativação Enzimática , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Técnicas In Vitro , Cinética , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/química , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Modelos Biológicos , Mutagênese Sítio-Dirigida , Fenótipo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
J Immunol ; 174(8): 4998-5006, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15814730

RESUMO

The lectin pathway of complement is activated by multimolecular complexes that recognize and bind to microbial polysaccharides. These complexes comprise a multimeric carbohydrate recognition subunit (either mannan-binding lectin (MBL) or a ficolin), three MBL-associated serine proteases (MASP-1, -2, and -3), and MAp19 (a truncated product of the MASP-2 gene). In this study we report the cloning of chicken MASP-2, MASP-3, and MAp19 and the organization of their genes and those for chicken MBL and a novel ficolin. Mammals usually possess two MBL genes and two or three ficolin genes, but chickens have only one of each, both of which represent the undiversified ancestors of the mammalian genes. The primary structure of chicken MASP-2 is 54% identical with those of the human and mouse MASP-2, and the organization of its gene is the same as in mammals. MASP-3 is even more conserved; chicken MASP-3 shares approximately 75% of its residues with human and Xenopus MASP-3. It is more widely expressed than other lectin pathway components, suggesting a possible function of MASP-3 different from those of the other components. In mammals, MASP-1 and MASP-3 are alternatively spliced products of a single structural gene. We demonstrate the absence of MASP-1 in birds, possibly caused by the loss of MASP-1-specific exons during phylogeny. Despite the lack of MASP-1-like enzymatic activity in sera of chicken and other birds, avian lectin pathway complexes efficiently activate C4.


Assuntos
Galinhas/genética , Galinhas/imunologia , Lectina de Ligação a Manose da Via do Complemento , Lectina de Ligação a Manose/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Embrião de Galinha , Galinhas/metabolismo , Clonagem Molecular , Lectina de Ligação a Manose da Via do Complemento/genética , DNA Complementar/genética , Expressão Gênica , Humanos , Hibridização In Situ , Fígado/embriologia , Fígado/imunologia , Fígado/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose , Camundongos , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Distribuição Tecidual
18.
J Immunol ; 170(3): 1462-5, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12538708

RESUMO

Mannose-binding lectin (MBL), a member of the collectin family, binds to carbohydrate structures on the surfaces of micro-organisms and may serve as a recognition molecule of the lectin pathway of complement activation. In rodents two forms, MBL-A and MBL-C, were described and shown to be products of two related, but uncoupled, genes. The liver is the main source of MBL biosynthesis. For rat MBL-A, expression has also been described in the kidney. Here we report that the two forms of murine MBL are differentially expressed in a number of nonhepatic tissues. Real-time RT-PCR revealed that the liver is the major site of expression for both MBL genes. Lower copy numbers were found in kidney, brain, spleen, and muscle. In testis, only the MBL-A gene is expressed, whereas MBL-C is exclusively expressed in small intestine. Using in situ hybridization and immunohistochemistry, we demonstrate that both MBLs are synthesized by hepatocytes and show MBL expression in cells of the monocyte/macrophage lineage. In the kidney MBL-A, but not MBL-C, was found to be synthesized. Vice versa, only MBL-C biosynthesis was detected in endothelial cells of the small intestine. The latter finding may support the view that MBL-C, as part of the innate immune system, may be a counterpart of secretory IgA of the acquired immune system in preventing, for example, microbial invasion and colonization. Our findings demonstrate that MBL-A and MBL-C are differentially expressed, implying distinct biological roles for both recognition molecules of the murine lectin pathway of complement.


Assuntos
Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Lectina de Ligação a Manose/análogos & derivados , Lectina de Ligação a Manose/biossíntese , Animais , Animais Recém-Nascidos , Feminino , Imuno-Histoquímica , Hibridização In Situ , Intestino Delgado/química , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Fígado/química , Fígado/imunologia , Fígado/metabolismo , Tecido Linfoide/química , Masculino , Lectina de Ligação a Manose/análise , Lectina de Ligação a Manose/genética , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos/imunologia , Isoformas de Proteínas/análise , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Baço/química , Baço/imunologia , Baço/metabolismo
19.
Mamm Genome ; 15(11): 887-900, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15672593

RESUMO

The mouse, rat, and human MASP2 loci are situated on syntenic chromosome regions and are highly conserved. They comprise the genes for MASP-2/ MAp19, TAR DNA binding protein of 43 kDa, FRAP kinase, CDT6, Polymyositis-Scleroderma 100-kDa autoantigen, spermidine synthase, and TERE which were analyzed by annotation of available gene transcript data and cross-species comparison of available genomic sequences. The human and rat genes for spermidine synthase have an additional intron compared to the mouse gene. The mouse and rat genes for Polymyositis-Scleroderma 100-kDa autoantigen have an additional exon compared to the human gene. We find support for the hypothesis that the MAp19-specific exon within the MASP2 gene may have originated in a transposable element. Blocks of highly conserved intronic sequences were found in the MASP2 gene and the TARDBP gene. The expression of all genes within the MASP2 locus was analyzed in mouse and rat. The restricted expression of MASP-2 and MAp19 mRNA in liver contrasts with the ubiquitous expression of all neighboring genes studied.


Assuntos
Expressão Gênica/fisiologia , Serina Endopeptidases/genética , Animais , Sequência de Bases , Elementos de DNA Transponíveis , Éxons , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose , Camundongos , Ratos , Alinhamento de Sequência , Análise de Sequência de DNA , Serina Endopeptidases/metabolismo , Sintenia
20.
J Immunol ; 169(10): 5948-54, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12421980

RESUMO

We have produced transgenic mice expressing human C1 inhibitor mRNA and protein under the control of the human promoter and regulatory elements. The transgene was generated using a minigene construct in which most of the human C1 inhibitor gene (C1NH) was replaced by C1 inhibitor cDNA. The construct retained the promoter region extending 1.18 kb upstream of the transcription start site, introns 1 and 2 as well as a stretch of 2.5 kb downstream of the polyadenylation site, and therefore carried all known elements involved in transcriptional regulation of the C1NH gene. Mice with high serum levels of human C1 inhibitor, resulting from multiple tandem integrations of the C1 inhibitor transgene, were selected. Immunohistochemistry in combination with in situ hybridization was applied to localize the sites of C1 inhibitor biosynthesis and to demonstrate its local production in brain, spleen, liver, heart, kidney, and lung. The distribution of human C1 inhibitor-expressing cells was qualitatively indistinguishable from that of its mouse counterpart, but expression levels of the transgene were significantly higher. In the spleen, production of C1 inhibitor was colocalized with that of a specific marker for white pulp follicular dendritic cells. This study demonstrates a stringently regulated expression of both the endogenous and the transgenic human C1 inhibitor gene and reveals local biosynthesis of C1 inhibitor at multiple sites in which the components of the macromolecular C1 complex are also produced.


Assuntos
Proteínas Inativadoras do Complemento 1/biossíntese , Proteínas Inativadoras do Complemento 1/genética , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Animais , Química Encefálica/genética , Química Encefálica/imunologia , Proteínas Inativadoras do Complemento 1/metabolismo , Proteína Inibidora do Complemento C1 , Cruzamentos Genéticos , Células Dendríticas Foliculares/química , Células Dendríticas Foliculares/imunologia , Células Dendríticas Foliculares/metabolismo , Feminino , Marcadores Genéticos/imunologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Fígado/química , Fígado/imunologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Baço/química , Baço/imunologia , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA