Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 12(4): e0174775, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28384648

RESUMO

The growth factor and cytokine regulated transcription factor STAT3 is required for the self-renewal of several stem cell types including tumor stem cells from glioblastoma. Here we show that STAT3 inhibition leads to the upregulation of the histone H3K27me2/3 demethylase Jmjd3 (KDM6B), which can reverse polycomb complex-mediated repression of tissue specific genes. STAT3 binds to the Jmjd3 promoter, suggesting that Jmjd3 is a direct target of STAT3. Overexpression of Jmjd3 slows glioblastoma stem cell growth and neurosphere formation, whereas knockdown of Jmjd3 rescues the STAT3 inhibitor-induced neurosphere formation defect. Consistent with this observation, STAT3 inhibition leads to histone H3K27 demethylation of neural differentiation genes, such as Myt1, FGF21, and GDF15. These results demonstrate that the regulation of Jmjd3 by STAT3 maintains repression of differentiation specific genes and is therefore important for the maintenance of self-renewal of normal neural and glioblastoma stem cells.


Assuntos
Neoplasias Encefálicas/enzimologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/enzimologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células-Tronco Neoplásicas/enzimologia , Fator de Transcrição STAT3/fisiologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Glioblastoma/patologia , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
2.
Cell Rep ; 18(6): 1484-1498, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178525

RESUMO

The mechanism underlying selective motor neuron (MN) death remains an essential question in the MN disease field. The MN disease spinal muscular atrophy (SMA) is attributable to reduced levels of the ubiquitous protein SMN. Here, we report that SMN levels are widely variable in MNs within a single genetic background and that this heterogeneity is seen not only in SMA MNs but also in MNs derived from controls and amyotrophic lateral sclerosis (ALS) patients. Furthermore, cells with low SMN are more susceptible to cell death. These findings raise the important clinical implication that some SMN-elevating therapeutics might be effective in MN diseases besides SMA. Supporting this, we found that increasing SMN across all MN populations using an Nedd8-activating enzyme inhibitor promotes survival in both SMA and ALS-derived MNs. Altogether, our work demonstrates that examination of human neurons at the single-cell level can reveal alternative strategies to be explored in the treatment of degenerative diseases.


Assuntos
Doenças Neuromusculares/metabolismo , Proteínas do Complexo SMN/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/metabolismo , Análise de Célula Única/métodos , Medula Espinal/metabolismo
3.
Assay Drug Dev Technol ; 12(6): 315-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25147906

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.


Assuntos
Descoberta de Drogas/métodos , Terapia Genética/métodos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Animais , Descoberta de Drogas/tendências , Terapia Genética/tendências , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/tendências , Humanos , Atrofia Muscular Espinal/diagnóstico , Proteína 2 de Sobrevivência do Neurônio Motor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA