Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(23): 10594-10602, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38787284

RESUMO

Large quantities of high-purity NH4CrF3 have been synthesized using a wet-chemical method, and its structural chemistry and magnetic properties are investigated in detail for the first time. NH4CrF3 is a tetragonal fluoroperovskite that displays an ordering of the ammonium (NH4+) groups at room temperature and C-type orbital ordering. The ammonium groups order and display distinct signs of hydrogen bonds to nearby fluoride anions by buckling the Cr-F-Cr angle away from 180°. The ammonium ordering remains up to 405 K, much higher than in other ammonium fluoroperovskites, indicating a correlation between the flexibility of the Jahn-Teller ion, the hydrogen bond formation, and the ammonium ordering. At 405 K, an order-to-disorder transition occurs, where the ammonium groups disorder, corresponding to a transition to higher symmetry. This is accompanied by a contraction of the unit cell from breaking hydrogen bonds, similar to the phenomenon observed in water ice melting. The compound orders antiferromagnetically with a Neél temperature of 60 K, an effective paramagnetic moment of 4.3 µB, and a Weiss temperature of -33 K. An A-type antiferromagnetic structure is identified by neutron diffraction, with an ordered moment of 3.72(2) µB.

2.
Angew Chem Int Ed Engl ; 63(19): e202400511, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38488202

RESUMO

As ferroelectrics hold significance and application prospects in wearable devices, the elastification of ferroelectrics becomes more and more important. Nevertheless, achieving elastic ferroelectrics requires stringent synthesis conditions, while the elastification of relaxor ferroelectric materials remains unexplored, presenting an untapped potential for utilization in energy storage and actuation for wearable electronics. The thiol-ene click reaction offers a mild and rapid reaction platform to prepare functional polymers. Therefore, we employed this approach to obtain an elastic relaxor ferroelectric by crosslinking an intramolecular carbon-carbon double bonds (CF=CH) polymer matrix with multiple thiol groups via a thiol-ene click reaction. The resulting elastic relaxor ferroelectric demonstrates pronounced relaxor-type ferroelectric behaviour. This material exhibits low modulus, excellent resilience, and fatigue resistance, maintaining a stable ferroelectric response even under strains up to 70 %. This study introduces a straightforward and efficient approach for the construction of elastic relaxor ferroelectrics, thereby expanding the application possibilities in wearable electronics.

3.
Mater Horiz ; 11(10): 2388-2396, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38441222

RESUMO

Magnetoelectric multiferroics, either single-phase or composites comprising ferroelectric/ferromagnetic coupled films, are promising candidates for energy efficient memory computing. However, most of the multiferroic magnetoelectric systems studied so far are based on materials that are not compatible with industrial processes. Doped hafnia is emerging as one of the few CMOS-compatible ferroelectric materials. Thus, it is highly relevant to study the integration of ferroelectric hafnia into multiferroic systems. In particular, ferroelectricity in hafnia, and the eventual magnetoelectric coupling when ferromagnetic layers are grown atop of it, are very much dependent on quality of interfaces. Since magnetic metals frequently exhibit noticeable reactivity when grown onto oxides, it is expected that ferroelectricity and magnetoelectricity might be reduced in multiferroic hafnia-based structures. In this article, we present excellent ferroelectric endurance and retention in epitaxial Hf0.5Zr0.5O2 films grown on buffered silicon using Co as the top electrode. The crucial influence of a thin Pt capping layer grown on top of Co on the ferroelectric functional characteristics is revealed by contrasting the utilization of Pt-capped Co, non-capped Co and Pt. Magnetic control of the imprint electric field (up to 40% modulation) is achieved in Pt-capped Co/Hf0.5Zr0.5O2 structures, although this does not lead to appreciable tuning of the ferroelectric polarization, as a result of its high stability. Computation of piezoelectric and flexoelectric strain-mediated mechanisms of the observed magnetoelectric coupling reveal that flexoelectric contributions are likely to be at the origin of the large imprint electric field variation.

4.
EES Catal ; 2(1): 335-350, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38222064

RESUMO

Co-based perovskite oxides are intensively studied as promising catalysts for electrochemical water splitting in an alkaline environment. However, the increasing Co demand by the battery industry is pushing the search for Co-free alternatives. Here we report a systematic study of the Co-free layered perovskite family RBaCuFeO5+δ (R = 4f lanthanide), where we uncover the existence of clear correlations between electrochemical properties and several physicochemical descriptors. Using a combination of advanced neutron and X-ray synchrotron techniques with ab initio DFT calculations we demonstrate and rationalize the positive impact of a large R ionic radius in their oxygen evolution reaction (OER) activity. We also reveal that, in these materials, Fe3+ is the transition metal cation the most prone to donate electrons. We also show that similar R3+/Ba2+ ionic radii favor the incorporation and mobility of oxygen in the layered perovskite structure and increase the number of available O diffusion paths, which have an additional, positive impact on both, the electric conductivity and the OER process. An unexpected result is the observation of a clear surface reconstruction exclusively in oxygen-rich samples (δ > 0), a fact that could be related to their superior OER activity. The encouraging intrinsic OER values obtained for the most active electrocatalyst (LaBaCuFeO5.49), together with the possibility of industrially producing this material in nanocrystalline form should inspire the design of other Co-free oxide catalysts with optimal properties for electrochemical water splitting.

5.
Mater Horiz ; 9(9): 2345-2352, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35968715

RESUMO

Light control of ferroelectric polarization is of interest for the exploitation of ferroelectric thin films in ultrafast data storage and logic functionalities. The rapidly oscillating electric field of light absorbed in a ferroelectric layer can suppress its polarization but cannot selectively reverse its direction. Here we take advantage of the built-in asymmetry at ferroelectric/electrode interfaces to break the up/down symmetry in uniaxial ferroelectrics to promote polarization reversal under illumination. It is shown that appropriate ferroelectric/metal structures allow the direction of the imprint electric field to be selected, which is instrumental for polarization reversal. This ability is further exploited by demonstrating the optical control of the resistance states in a ferroelectric capacitor.

6.
Nanoscale ; 12(20): 11280-11287, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32420576

RESUMO

Ferroelectric HfO2 is a promising material for new memory devices, but significant improvement of its important properties is necessary for practical application. However, previous literature shows that a dilemma exists between polarization, endurance and retention. Since all these properties should be simultaneously high, overcoming this issue is of the highest relevance. Here, we demonstrate that high crystalline quality sub-5 nm Hf0.5Zr0.5O2 capacitors, integrated epitaxially with Si(001), present combined high polarization (2Pr of 27 µC cm-2 in the pristine state), endurance (2Pr > 6 µC cm-2 after 1011 cycles) and retention (2Pr > 12 µC cm-2 extrapolated at 10 years) using the same poling conditions (2.5 V). This achievement is demonstrated in films thinner than 5 nm, thus opening bright possibilities in ferroelectric tunnel junctions and other devices.

7.
ACS Appl Mater Interfaces ; 11(6): 6224-6229, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30657323

RESUMO

Epitaxial ferroelectric Hf0.5Zr0.5O2 films have been successfully integrated in a capacitor heterostructure on Si(001). The orthorhombic Hf0.5Zr0.5O2 phase, [111] out-of-plane oriented, is stabilized in the films. The films present high remnant polarization Pr close to 20 µC/cm2, rivaling with equivalent epitaxial films on single crystalline oxide substrates. Retention time is longer than 10 years for a writing field of around 5 MV/cm, and the capacitors show endurance up to 109 cycles for a writing voltage of around 4 MV/cm. It is found that the formation of the orthorhombic ferroelectric phase depends critically on the bottom electrode, being achieved on La0.67Sr0.33MnO3 but not on LaNiO3. The demonstration of excellent ferroelectric properties in epitaxial films of Hf0.5Zr0.5O2 on Si(001) is relevant toward fabrication of devices that require homogeneity in the nanometer scale, as well as for better understanding of the intrinsic properties of this promising ferroelectric oxide.

8.
Sci Rep ; 8(1): 495, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323164

RESUMO

Ferroelectric BaTiO3 films with large polarization have been integrated with Si(001) by pulsed laser deposition. High quality c-oriented epitaxial films are obtained in a substrate temperature range of about 300 °C wide. The deposition temperature critically affects the growth kinetics and thermodynamics balance, resulting on a high impact in the strain of the BaTiO3 polar axis, which can exceed 2% in films thicker than 100 nm. The ferroelectric polarization scales with the strain and therefore deposition temperature can be used as an efficient tool to tailor ferroelectric polarization. The developed strategy overcomes the main limitations of the conventional strain engineering methodologies based on substrate selection: it can be applied to films on specific substrates including Si(001) and perovskites, and it is not restricted to ultrathin films.

9.
ACS Appl Mater Interfaces ; 10(30): 25529-25535, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985584

RESUMO

Conventional strain engineering of epitaxial ferroelectric oxide thin films is based on the selection of substrates with a suitable lattice parameter. Here, we show that the variation of oxygen pressure during pulsed laser deposition is a flexible strain engineering method for epitaxial ferroelectric BaTiO3 films either on perovskite substrates or on Si(001) wafers. This unconventional growth strategy permits continuous tuning of strain up to high levels (ε > 0.8%) in films greater than one hundred nanometers thick, as well as selecting the polar axis orientation to be either parallel or perpendicular to the substrate surface plane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA