Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 105(5): 947-958, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31668704

RESUMO

Human-specific duplications at chromosome 16p11.2 mediate recurrent pathogenic 600 kbp BP4-BP5 copy-number variations, which are among the most common genetic causes of autism. These copy-number polymorphic duplications are under positive selection and include three to eight copies of BOLA2, a gene involved in the maturation of cytosolic iron-sulfur proteins. To investigate the potential advantage provided by the rapid expansion of BOLA2, we assessed hematological traits and anemia prevalence in 379,385 controls and individuals who have lost or gained copies of BOLA2: 89 chromosome 16p11.2 BP4-BP5 deletion carriers and 56 reciprocal duplication carriers in the UK Biobank. We found that the 16p11.2 deletion is associated with anemia (18/89 carriers, 20%, p = 4e-7, OR = 5), particularly iron-deficiency anemia. We observed similar enrichments in two clinical 16p11.2 deletion cohorts, which included 6/63 (10%) and 7/20 (35%) unrelated individuals with anemia, microcytosis, low serum iron, or low blood hemoglobin. Upon stratification by BOLA2 copy number, our data showed an association between low BOLA2 dosage and the above phenotypes (8/15 individuals with three copies, 53%, p = 1e-4). In parallel, we analyzed hematological traits in mice carrying the 16p11.2 orthologous deletion or duplication, as well as Bola2+/- and Bola2-/- animals. The Bola2-deficient mice and the mice carrying the deletion showed early evidence of iron deficiency, including a mild decrease in hemoglobin, lower plasma iron, microcytosis, and an increased red blood cell zinc-protoporphyrin-to-heme ratio. Our results indicate that BOLA2 participates in iron homeostasis in vivo, and its expansion has a potential adaptive role in protecting against iron deficiency.


Assuntos
Anemia/genética , Transtorno Autístico/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Par 16/genética , Homeostase/genética , Proteínas/genética , Animais , Deleção Cromossômica , Transtornos Cromossômicos/genética , Variações do Número de Cópias de DNA/genética , Feminino , Genótipo , Heterozigoto , Humanos , Ferro , Masculino , Fenótipo
2.
Genet Med ; 21(4): 816-825, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30190612

RESUMO

PURPOSE: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. METHODS: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. RESULTS: The number of rare likely deleterious variants in functionally intolerant genes ("other hits") correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with their carrier family members. Probands with 16p12.1 deletion and a strong family history presented more severe clinical features (p=0.04) and higher burden of other hits compared with those with mild/no family history (p=0.001). The number of other hits also correlated with severity of cognitive impairment in probands carrying pathogenic CNVs (n=53) or de novo pathogenic variants in disease genes (n=290), and negatively correlated with head size among 80 probands with 16p11.2 deletion. These co-occurring hits involved known disease-associated genes such as SETD5, AUTS2, and NRXN1, and were enriched for cellular and developmental processes. CONCLUSION: Accurate genetic diagnosis of complex disorders will require complete evaluation of the genetic background even after a candidate disease-associated variant is identified.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Triagem de Portadores Genéticos , Metiltransferases/genética , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Transtorno Autístico/fisiopatologia , Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 16/genética , Cognição/fisiologia , Proteínas do Citoesqueleto , Variações do Número de Cópias de DNA/genética , Feminino , Regulação da Expressão Gênica/genética , Patrimônio Genético , Humanos , Masculino , Moléculas de Adesão de Célula Nervosa , Pais , Linhagem , Fenótipo , Deleção de Sequência/genética , Irmãos , Fatores de Transcrição
3.
Am J Hum Genet ; 96(5): 784-96, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25937446

RESUMO

The 16p11.2 600 kb copy-number variants (CNVs) are associated with mirror phenotypes on BMI, head circumference, and brain volume and represent frequent genetic lesions in autism spectrum disorders (ASDs) and schizophrenia. Here we interrogated the transcriptome of individuals carrying reciprocal 16p11.2 CNVs. Transcript perturbations correlated with clinical endophenotypes and were enriched for genes associated with ASDs, abnormalities of head size, and ciliopathies. Ciliary gene expression was also perturbed in orthologous mouse models, raising the possibility that ciliary dysfunction contributes to 16p11.2 pathologies. In support of this hypothesis, we found structural ciliary defects in the CA1 hippocampal region of 16p11.2 duplication mice. Moreover, by using an established zebrafish model, we show genetic interaction between KCTD13, a key driver of the mirrored neuroanatomical phenotypes of the 16p11.2 CNV, and ciliopathy-associated genes. Overexpression of BBS7 rescues head size and neuroanatomical defects of kctd13 morphants, whereas suppression or overexpression of CEP290 rescues phenotypes induced by KCTD13 under- or overexpression, respectively. Our data suggest that dysregulation of ciliopathy genes contributes to the clinical phenotypes of these CNVs.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA/genética , Esquizofrenia/genética , Animais , Encéfalo , Criança , Transtornos Globais do Desenvolvimento Infantil/patologia , Deleção Cromossômica , Corpo Ciliar/metabolismo , Corpo Ciliar/patologia , Regulação da Expressão Gênica , Humanos , Camundongos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Esquizofrenia/patologia , Transcriptoma , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
Nature ; 478(7367): 97-102, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21881559

RESUMO

Both obesity and being underweight have been associated with increased mortality. Underweight, defined as a body mass index (BMI) ≤ 18.5 kg per m(2) in adults and ≤ -2 standard deviations from the mean in children, is the main sign of a series of heterogeneous clinical conditions including failure to thrive, feeding and eating disorder and/or anorexia nervosa. In contrast to obesity, few genetic variants underlying these clinical conditions have been reported. We previously showed that hemizygosity of a ∼600-kilobase (kb) region on the short arm of chromosome 16 causes a highly penetrant form of obesity that is often associated with hyperphagia and intellectual disabilities. Here we show that the corresponding reciprocal duplication is associated with being underweight. We identified 138 duplication carriers (including 132 novel cases and 108 unrelated carriers) from individuals clinically referred for developmental or intellectual disabilities (DD/ID) or psychiatric disorders, or recruited from population-based cohorts. These carriers show significantly reduced postnatal weight and BMI. Half of the boys younger than five years are underweight with a probable diagnosis of failure to thrive, whereas adult duplication carriers have an 8.3-fold increased risk of being clinically underweight. We observe a trend towards increased severity in males, as well as a depletion of male carriers among non-medically ascertained cases. These features are associated with an unusually high frequency of selective and restrictive eating behaviours and a significant reduction in head circumference. Each of the observed phenotypes is the converse of one reported in carriers of deletions at this locus. The phenotypes correlate with changes in transcript levels for genes mapping within the duplication but not in flanking regions. The reciprocal impact of these 16p11.2 copy-number variants indicates that severe obesity and being underweight could have mirror aetiologies, possibly through contrasting effects on energy balance.


Assuntos
Índice de Massa Corporal , Cromossomos Humanos Par 16/genética , Dosagem de Genes/genética , Obesidade/genética , Fenótipo , Magreza/genética , Adolescente , Adulto , Idoso , Envelhecimento , Estatura/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/genética , Metabolismo Energético/genética , Europa (Continente) , Feminino , Duplicação Gênica/genética , Perfilação da Expressão Gênica , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Cabeça/anatomia & histologia , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Transtornos Mentais/genética , Pessoa de Meia-Idade , Mutação/genética , América do Norte , RNA Mensageiro/análise , RNA Mensageiro/genética , Deleção de Sequência/genética , Transcrição Gênica , Adulto Jovem
5.
Hum Mol Genet ; 23(22): 6069-80, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24939913

RESUMO

Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 16/genética , Epilepsia Rolândica/genética , Criança , Pré-Escolar , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 22/genética , Variações do Número de Cópias de DNA , Feminino , Humanos , Lactente , Masculino , Polimorfismo de Nucleotídeo Único
6.
JAMA ; 313(20): 2044-54, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26010633

RESUMO

IMPORTANCE: The association of copy number variations (CNVs), differing numbers of copies of genetic sequence at locations in the genome, with phenotypes such as intellectual disability has been almost exclusively evaluated using clinically ascertained cohorts. The contribution of these genetic variants to cognitive phenotypes in the general population remains unclear. OBJECTIVE: To investigate the clinical features conferred by CNVs associated with known syndromes in adult carriers without clinical preselection and to assess the genome-wide consequences of rare CNVs (frequency ≤0.05%; size ≥250 kilobase pairs [kb]) on carriers' educational attainment and intellectual disability prevalence in the general population. DESIGN, SETTING, AND PARTICIPANTS: The population biobank of Estonia contains 52,000 participants enrolled from 2002 through 2010. General practitioners examined participants and filled out a questionnaire of health- and lifestyle-related questions, as well as reported diagnoses. Copy number variant analysis was conducted on a random sample of 7877 individuals and genotype-phenotype associations with education and disease traits were evaluated. Our results were replicated on a high-functioning group of 993 Estonians and 3 geographically distinct populations in the United Kingdom, the United States, and Italy. MAIN OUTCOMES AND MEASURES: Phenotypes of genomic disorders in the general population, prevalence of autosomal CNVs, and association of these variants with educational attainment (from less than primary school through scientific degree) and prevalence of intellectual disability. RESULTS: Of the 7877 in the Estonian cohort, we identified 56 carriers of CNVs associated with known syndromes. Their phenotypes, including cognitive and psychiatric problems, epilepsy, neuropathies, obesity, and congenital malformations are similar to those described for carriers of identical rearrangements ascertained in clinical cohorts. A genome-wide evaluation of rare autosomal CNVs (frequency, ≤0.05%; ≥250 kb) identified 831 carriers (10.5%) of the screened general population. Eleven of 216 (5.1%) carriers of a deletion of at least 250 kb (odds ratio [OR], 3.16; 95% CI, 1.51-5.98; P = 1.5e-03) and 6 of 102 (5.9%) carriers of a duplication of at least 1 Mb (OR, 3.67; 95% CI, 1.29-8.54; P = .008) had an intellectual disability compared with 114 of 6819 (1.7%) in the Estonian cohort. The mean education attainment was 3.81 (P = 1.06e-04) among 248 (≥250 kb) deletion carriers and 3.69 (P = 5.024e-05) among 115 duplication carriers (≥1 Mb). Of the deletion carriers, 33.5% did not graduate from high school (OR, 1.48; 95% CI, 1.12-1.95; P = .005) and 39.1% of duplication carriers did not graduate high school (OR, 1.89; 95% CI, 1.27-2.8; P = 1.6e-03). Evidence for an association between rare CNVs and lower educational attainment was supported by analyses of cohorts of adults from Italy and the United States and adolescents from the United Kingdom. CONCLUSIONS AND RELEVANCE: Known pathogenic CNVs in unselected, but assumed to be healthy, adult populations may be associated with unrecognized clinical sequelae. Additionally, individually rare but collectively common intermediate-size CNVs may be negatively associated with educational attainment. Replication of these findings in additional population groups is warranted given the potential implications of this observation for genomics research, clinical care, and public health.


Assuntos
Variações do Número de Cópias de DNA , Heterozigoto , Deficiência Intelectual/genética , Transtornos Mentais/genética , Adolescente , Adulto , Cognição , Escolaridade , Epilepsia/genética , Estônia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Itália , Masculino , Obesidade/genética , Fenótipo , Reino Unido , Estados Unidos
7.
Hum Mutat ; 35(3): 377-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357492

RESUMO

Copy number gains at Xq28 are a frequent cause of X-linked intellectual disability (XLID). Here, we report on a recurrent 0.5 Mb tandem copy number gain at distal Xq28 not including MECP2, in four male patients with nonsyndromic mild ID and behavioral problems. The genomic region is duplicated in two families and triplicated in a third reflected by more distinctive clinical features. The X-inactivation patterns in carrier females correspond well with their clinical symptoms. Our mapping data confirm that this recurrent gain is likely mediated by nonallelic homologous recombination between two directly oriented Int22h repeats. The affected region harbors eight genes of which RAB39B encoding a small GTPase, was the prime candidate since loss-of-function mutations had been linked to ID. RAB39B is expressed at stable levels in lymphocytes from control individuals, suggesting a tight regulation. mRNA levels in our patients were almost two-fold increased. Overexpression of Rab39b in mouse primary hippocampal neurons demonstrated a significant decrease in neuronal branching as well as in the number of synapses when compared with the control neurons. Taken together, we provide evidence that the increased dosage of RAB39B causes a disturbed neuronal development leading to cognitive impairment in patients with this recurrent copy number gain.


Assuntos
Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA , Deficiência Intelectual/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Bélgica , Diferenciação Celular , Criança , Mapeamento Cromossômico , Estônia , Duplicação Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Neurônios/citologia , Neurônios/metabolismo , População Branca , Inativação do Cromossomo X
8.
Twin Res Hum Genet ; 17(5): 405-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24909117

RESUMO

Chromosome 17q21.31 microdeletion syndrome is a genomic disorder caused by a recurrent 600 kb long deletion. The deletion affects the region of a common inversion present in about 20% of Europeans. The inversion is associated with the H2 haplotype carrying additional low-copy repeats susceptible to non-allelic homologous recombination, and this haplotype is prone to deletion. No instances of 17q21.31 deletions inherited from an affected parent have been reported, and the deletions always affected a parental chromosome with the H2 haplotype. The syndrome is characterized clinically by intellectual disability, hypotonia, friendly behavior and specific facial dysmorphism with long face, large tubular or pear-shaped nose and bulbous nasal tip. We present monozygotic twin sisters showing the typical clinical picture of the syndrome. The phenotype of the sisters was very similar, with a slightly more severe presentation in Twin B. The 17q21.31 microdeletion was confirmed in both patients but in neither of their parents. Potential copy number differences between the genomes of the twins were subsequently searched using high-resolution single nucleotide polymorphism (SNP) and comparative genome hybridisation (CGH) arrays. However, these analyses identified no additional aberrations or genomic differences that could potentially be responsible for the subtle phenotypic differences. These could possibly be related to the more severe perinatal history of Twin B, or to the variable expressivity of the disorder. In accord with the expectations, one of the parents (the mother) was shown to carry the H2 haplotype, and the maternal allele of chromosome 17q21.31 was missing in the twins.


Assuntos
Haplótipos , Deficiência Intelectual/genética , Polimorfismo de Nucleotídeo Único , Gêmeos Monozigóticos/genética , Adulto , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Síndrome de Smith-Magenis
9.
Am J Med Genet A ; 161A(4): 865-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23495096

RESUMO

The 2p15-p16.1 microdeletion syndrome is a novel, rare disorder characterized by developmental delay, intellectual disability, microcephaly, growth retardation, facial abnormalities, and other medical problems. We report here on an 11-year-old female showing clinical features consistent with the syndrome and carrying a de novo 0.45 Mb long deletion of the paternally derived 2p16.1 allele. The deleted region contains only three protein-coding RefSeq genes, BCL11A, PAPOLG, and REL, and one long non-coding RNA gene FLJ16341. Based on close phenotypic similarities with six reported patients showing typical clinical features of the syndrome, we propose that the critical region can be narrowed down further, and that these brain expressed genes can be considered candidates for the features seen in this microdeletion syndrome.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 2 , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Criança , Fácies , Feminino , Estudos de Associação Genética , Humanos , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Repressoras , Síndrome
10.
J Med Genet ; 49(10): 660-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23054248

RESUMO

BACKGROUND: The recurrent ~600 kb 16p11.2 BP4-BP5 deletion is among the most frequent known genetic aetiologies of autism spectrum disorder (ASD) and related neurodevelopmental disorders. OBJECTIVE: To define the medical, neuropsychological, and behavioural phenotypes in carriers of this deletion. METHODS: We collected clinical data on 285 deletion carriers and performed detailed evaluations on 72 carriers and 68 intrafamilial non-carrier controls. RESULTS: When compared to intrafamilial controls, full scale intelligence quotient (FSIQ) is two standard deviations lower in carriers, and there is no difference between carriers referred for neurodevelopmental disorders and carriers identified through cascade family testing. Verbal IQ (mean 74) is lower than non-verbal IQ (mean 83) and a majority of carriers require speech therapy. Over 80% of individuals exhibit psychiatric disorders including ASD, which is present in 15% of the paediatric carriers. Increase in head circumference (HC) during infancy is similar to the HC and brain growth patterns observed in idiopathic ASD. Obesity, a major comorbidity present in 50% of the carriers by the age of 7 years, does not correlate with FSIQ or any behavioural trait. Seizures are present in 24% of carriers and occur independently of other symptoms. Malformations are infrequently found, confirming only a few of the previously reported associations. CONCLUSIONS: The 16p11.2 deletion impacts in a quantitative and independent manner FSIQ, behaviour and body mass index, possibly through direct influences on neural circuitry. Although non-specific, these features are clinically significant and reproducible. Lastly, this study demonstrates the necessity of studying large patient cohorts ascertained through multiple methods to characterise the clinical consequences of rare variants involved in common diseases.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Deleção Cromossômica , Cromossomos Humanos Par 16 , Deficiências do Desenvolvimento/genética , Fenótipo , Adolescente , Adulto , Índice de Massa Corporal , Criança , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Deficiências do Desenvolvimento/diagnóstico , Feminino , Ordem dos Genes , Heterozigoto , Humanos , Testes de Inteligência , Masculino , Síndrome , Adulto Jovem
11.
NPJ Genom Med ; 7(1): 38, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715439

RESUMO

Recurrent copy-number variations (CNVs) at chromosome 16p11.2 are associated with neurodevelopmental diseases, skeletal system abnormalities, anemia, and genitourinary defects. Among the 40 protein-coding genes encompassed within the rearrangement, some have roles in leukocyte biology and immunodeficiency, like SPN and CORO1A. We therefore investigated leukocyte differential counts and disease in 16p11.2 CNV carriers. In our clinically-recruited cohort, we identified three deletion carriers from two families (out of 32 families assessed) with neutropenia and lymphopenia. They had no deleterious single-nucleotide or indel variant in known cytopenia genes, suggesting a possible causative role of the deletion. Noticeably, all three individuals had the lowest copy number of the human-specific BOLA2 duplicon (copy-number range: 3-8). Consistent with the lymphopenia and in contrast with the neutropenia associations, adult deletion carriers from UK biobank (n = 74) showed lower lymphocyte (Padj = 0.04) and increased neutrophil (Padj = 8.31e-05) counts. Mendelian randomization studies pinpointed to reduced CORO1A, KIF22, and BOLA2-SMG1P6 expressions being causative for the lower lymphocyte counts. In conclusion, our data suggest that 16p11.2 deletion, and possibly also the lowest dosage of the BOLA2 duplicon, are associated with low lymphocyte counts. There is a trend between 16p11.2 deletion with lower copy-number of the BOLA2 duplicon and higher susceptibility to moderate neutropenia. Higher numbers of cases are warranted to confirm the association with neutropenia and to resolve the involvement of the deletion coupled with deleterious variants in other genes and/or with the structure and copy number of segments in the CNV breakpoint regions.

13.
Eur J Hum Genet ; 15(2): 162-72, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17119536

RESUMO

Array-based genome-wide screening methods were recently introduced to clinical practice in order to detect small genomic imbalances that may cause severe genetic disorders. The continuous advancement of such methods plays an extremely important role in diagnostic genetics and medical genomics. We have modified and adapted the original multiplex amplifiable probe hybridization (MAPH) to a novel microarray format providing an important new diagnostic tool for detection of small size copy-number changes in any locus of human genome. Here, we describe the new array-MAPH diagnostic method and show proof of concept through fabrication, interrogation and validation of a human chromosome X-specific array. We have developed new bioinformatic tools and methodology for designing and producing amplifiable hybridization probes (200-600 bp) for array-MAPH. We designed 558 chromosome X-specific probes with median spacing 238 kb and 107 autosomal probes, which were spotted onto microarrays. DNA samples from normal individuals and patients with known and unknown chromosome X aberrations were analyzed for validation. Array-MAPH detected exactly the same deletions and duplications in blind studies, as well as other unknown small size deletions showing its accuracy and sensitivity. All results were confirmed by fluorescence in situ hybridization and probe-specific PCR. Array-MAPH is a new microarray-based diagnostic tool for the detection of small-scale copy-number changes in complex genomes, which may be useful for genotype-phenotype correlations, identification of new genes, studying genetic variation and provision of genetic services.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos X/genética , Genoma Humano , Instabilidade Genômica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de DNA/química , Sondas de DNA/genética , Humanos
14.
Per Med ; 13(4): 303-314, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29749813

RESUMO

BACKGROUND: Procedural guidelines for disclosure of incidental genomic information are lacking. METHODS: We introduce a method and evaluated the impact of returning results to population biobank participants with 16p11.2 copy number variants, which are commonly associated with neurodevelopmental disorders and BMI imbalance. Of the 7877 participants, 11 carriers were detected. Eight participants were informed of their carrier status and surveyed 11-17 months later. RESULTS: All participants demonstrated preference for disclosure. Although two participants experienced worry, all five survey respondents rated receiving this information favorably. One participant reported modifications in treatment and three felt that their treatment/condition had since improved. CONCLUSION: This approach can be adapted and applied for the return of incidental findings to biobank participants.

15.
Biol Psychiatry ; 80(2): 129-139, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26742926

RESUMO

BACKGROUND: Deletions and duplications of the 16p11.2 BP4-BP5 locus are prevalent copy number variations (CNVs), highly associated with autism spectrum disorder and schizophrenia. Beyond language and global cognition, neuropsychological assessments of these two CNVs have not yet been reported. METHODS: This study investigates the relationship between the number of genomic copies at the 16p11.2 locus and cognitive domains assessed in 62 deletion carriers, 44 duplication carriers, and 71 intrafamilial control subjects. RESULTS: IQ is decreased in deletion and duplication carriers, but we demonstrate contrasting cognitive profiles in these reciprocal CNVs. Deletion carriers present with severe impairments of phonology and of inhibition skills beyond what is expected for their IQ level. In contrast, for verbal memory and phonology, the data may suggest that duplication carriers outperform intrafamilial control subjects with the same IQ level. This finding is reminiscent of special isolated skills as well as contrasting language performance observed in autism spectrum disorder. Some domains, such as visuospatial and working memory, are unaffected by the 16p11.2 locus beyond the effect of decreased IQ. Neuroimaging analyses reveal that measures of inhibition covary with neuroanatomic structures previously identified as sensitive to 16p11.2 CNVs. CONCLUSIONS: The simultaneous study of reciprocal CNVs suggests that the 16p11.2 genomic locus modulates specific cognitive skills according to the number of genomic copies. Further research is warranted to replicate these findings and elucidate the molecular mechanisms modulating these cognitive performances.


Assuntos
Transtorno Autístico , Deleção Cromossômica , Transtornos Cromossômicos , Duplicação Cromossômica/genética , Cromossomos Humanos Par 16/genética , Disfunção Cognitiva , Variações do Número de Cópias de DNA/genética , Função Executiva/fisiologia , Deficiência Intelectual , Inteligência/genética , Idioma , Memória/fisiologia , Destreza Motora/fisiologia , Adolescente , Adulto , Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Criança , Pré-Escolar , Transtornos Cromossômicos/diagnóstico por imagem , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
16.
JAMA Psychiatry ; 73(1): 20-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26629640

RESUMO

IMPORTANCE: The 16p11.2 BP4-BP5 duplication is the copy number variant most frequently associated with autism spectrum disorder (ASD), schizophrenia, and comorbidities such as decreased body mass index (BMI). OBJECTIVES: To characterize the effects of the 16p11.2 duplication on cognitive, behavioral, medical, and anthropometric traits and to understand the specificity of these effects by systematically comparing results in duplication carriers and reciprocal deletion carriers, who are also at risk for ASD. DESIGN, SETTING, AND PARTICIPANTS: This international cohort study of 1006 study participants compared 270 duplication carriers with their 102 intrafamilial control individuals, 390 reciprocal deletion carriers, and 244 deletion controls from European and North American cohorts. Data were collected from August 1, 2010, to May 31, 2015 and analyzed from January 1 to August 14, 2015. Linear mixed models were used to estimate the effect of the duplication and deletion on clinical traits by comparison with noncarrier relatives. MAIN OUTCOMES AND MEASURES: Findings on the Full-Scale IQ (FSIQ), Nonverbal IQ, and Verbal IQ; the presence of ASD or other DSM-IV diagnoses; BMI; head circumference; and medical data. RESULTS: Among the 1006 study participants, the duplication was associated with a mean FSIQ score that was lower by 26.3 points between proband carriers and noncarrier relatives and a lower mean FSIQ score (16.2-11.4 points) in nonproband carriers. The mean overall effect of the deletion was similar (-22.1 points; P < .001). However, broad variation in FSIQ was found, with a 19.4- and 2.0-fold increase in the proportion of FSIQ scores that were very low (≤40) and higher than the mean (>100) compared with the deletion group (P < .001). Parental FSIQ predicted part of this variation (approximately 36.0% in hereditary probands). Although the frequency of ASD was similar in deletion and duplication proband carriers (16.0% and 20.0%, respectively), the FSIQ was significantly lower (by 26.3 points) in the duplication probands with ASD. There also were lower head circumference and BMI measurements among duplication carriers, which is consistent with the findings of previous studies. CONCLUSIONS AND RELEVANCE: The mean effect of the duplication on cognition is similar to that of the reciprocal deletion, but the variance in the duplication is significantly higher, with severe and mild subgroups not observed with the deletion. These results suggest that additional genetic and familial factors contribute to this variability. Additional studies will be necessary to characterize the predictors of cognitive deficits.


Assuntos
Transtorno do Espectro Autista/psicologia , Transtorno Autístico/psicologia , Transtornos Cromossômicos/psicologia , Duplicação Cromossômica , Cromossomos Humanos Par 16/genética , Cognição , Deficiência Intelectual/psicologia , Esquizofrenia/genética , Adolescente , Adulto , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Transtorno Autístico/epidemiologia , Transtorno Autístico/genética , Estudos de Casos e Controles , Cerebelo/anormalidades , Criança , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/epidemiologia , Transtornos Cromossômicos/genética , Estudos de Coortes , Comorbidade , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/genética , Epilepsia/epidemiologia , Epilepsia/genética , Feminino , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Masculino , Microcefalia/epidemiologia , Microcefalia/genética , Pessoa de Meia-Idade , Malformações do Sistema Nervoso/epidemiologia , Malformações do Sistema Nervoso/genética , Esquizofrenia/epidemiologia , Psicologia do Esquizofrênico , Adulto Jovem
17.
Eur J Med Genet ; 48(3): 241-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16179220

RESUMO

The development of accurate and sensitive methodologies to detect small chromosomal imbalances (<3 Mb) is extremely important in clinical diagnostics and research in human genetics. The technique of array-comparative genomic hybridization (CGH) using BAC and PAC clones is very sensitive methodology and is rapidly becoming the method of choice for high-resolution screening of genomic copy-number changes. An alternative methodology to CGH is the multiplex amplifiable probe hybridization (MAPH) methodology, a DNA based method that allows the accurate and reliable determination of changes in copy number in "known" or "unknown locations" in the human genome. MAPH uses probes of 100-500 bp in size, that can be specifically designed for any gene or locus in the genome and cover any gene exons, the subtelomeric or subcentromeric regions, any chromosomal segment, a whole chromosome or the total human genome. MAPH can provide extremely high resolution and enable the sensitive detection of loss or gain of genomic DNA sequences as small as 150 bp. Very recently we succeeded in the advancement of MAPH from gel and capillary analyses to microarrays. The array-MAPH methodology offers an alternative methodology to array-CGH and provides a new sensitive microarray-based method including several advantages for the detection of copy number changes in the human genome.


Assuntos
Eletroforese Capilar , Dosagem de Genes , Instabilidade Genômica/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , DNA/análise , Humanos , Hibridização de Ácido Nucleico/métodos
18.
PLoS One ; 8(3): e58048, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554873

RESUMO

The limited ability of common variants to account for the genetic contribution to complex disease has prompted searches for rare variants of large effect, to partly explain the 'missing heritability'. Analyses of genome-wide genotyping data have identified genomic structural variants (GSVs) as a source of such rare causal variants. Recent studies have reported multiple GSV loci associated with risk of obesity. We attempted to replicate these associations by similar analysis of two familial-obesity case-control cohorts and a population cohort, and detected GSVs at 11 out of 18 loci, at frequencies similar to those previously reported. Based on their reported frequencies and effect sizes (OR≥25), we had sufficient statistical power to detect the large majority (80%) of genuine associations at these loci. However, only one obesity association was replicated. Deletion of a 220 kb region on chromosome 16p11.2 has a carrier population frequency of 2×10(-4) (95% confidence interval [9.6×10(-5)-3.1×10(-4)]); accounts overall for 0.5% [0.19%-0.82%] of severe childhood obesity cases (P = 3.8×10(-10); odds ratio = 25.0 [9.9-60.6]); and results in a mean body mass index (BMI) increase of 5.8 kg.m(-2) [1.8-10.3] in adults from the general population. We also attempted replication using BMI as a quantitative trait in our population cohort; associations with BMI at or near nominal significance were detected at two further loci near KIF2B and within FOXP2, but these did not survive correction for multiple testing. These findings emphasise several issues of importance when conducting rare GSV association, including the need for careful cohort selection and replication strategy, accurate GSV identification, and appropriate correction for multiple testing and/or control of false discovery rate. Moreover, they highlight the potential difficulty in replicating rare CNV associations across different populations. Nevertheless, we show that such studies are potentially valuable for the identification of variants making an appreciable contribution to complex disease.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Loci Gênicos , Obesidade/genética , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Fatores de Transcrição Forkhead/genética , Estudo de Associação Genômica Ampla , Humanos , Cinesinas/genética , Masculino , Pessoa de Meia-Idade
19.
Eur J Med Genet ; 54(2): 136-43, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21112420

RESUMO

The increasing use of whole-genome array screening has revealed the important role of DNA copy-number variations in the pathogenesis of neurodevelopmental disorders and several recurrent genomic disorders have been defined during recent years. However, some variants considered to be pathogenic have also been observed in phenotypically normal individuals. This underlines the importance of further characterization of genomic variants with potentially variable expressivity in both patient and general population cohorts to clarify their phenotypic consequence. In this study whole-genome SNP arrays were used to investigate genomic rearrangements in 77 Estonian families with idiopathic mental retardation. In addition to this family-based approach, phenotype and genotype data from a cohort of 1000 individuals in the general population were used for accurate interpretation of aberrations found in mental retardation patients. Relevant structural aberrations were detected in 18 of the families analyzed (23%). Fifteen of those were in genomic regions where clinical significance has previously been established. In 3 families, 4 novel aberrations associated with intellectual disability were detected in chromosome regions 2p25.1-p24.3, 3p12.1-p11.2, 7p21.2-p21.1 and Xq28. Carriers of imbalances in 15q13.3, 16p11.2 and Xp22.31 were identified among reference individuals, affirming the variable phenotypic consequence of rare variants in some genomic regions considered as pathogenic.


Assuntos
Aberrações Cromossômicas , Genoma Humano/genética , Deficiência Intelectual/genética , Polimorfismo de Nucleotídeo Único , Estônia , Família , Genótipo , Humanos , Deficiência Intelectual/epidemiologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
20.
Eur J Med Genet ; 52(1): 71-4, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18983945

RESUMO

Only eight cases involving deletions of chromosome 17 in the region q22-q24 have been reported previously. We describe an additional case, a 7-year-old boy with profound mental retardation, severe microcephaly, facial dysmorphism, symphalangism, contractures of large joints, hyperopia, strabismus, bilateral conductive hearing loss, genital abnormality, psoriasis vulgaris and tracheo-esophageal fistula. Analysis with whole-genome SNP genotyping assay detected a 5.9 Mb deletion in chromosome band 17q22-q23.2 with breakpoints between 48,200,000-48,300,000 bp and 54,200,000-54,300,000 bp (according to NCBI 36). The aberration was confirmed by real-time quantitative PCR analysis. Haploinsufficiency of NOG gene has been implicated in the development of conductive hearing loss, skeletal anomalies including symphalangism, contractures of joints, and hyperopia in our patient and may also contribute to the development of tracheo-esophageal fistula and/or esophageal atresia.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 17 , Perda Auditiva Condutiva/genética , Fístula Traqueoesofágica/genética , Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Criança , Análise Mutacional de DNA , Feminino , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA