Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 48(15): 7018-25, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19419150

RESUMO

Various P2 and P'3-Na(x)CoO(2) phases, with x ranging approximately from 0.6 to 0.75, have been studied by variable-temperature (23)Na magic angle spinning (MAS) NMR. Signal modification versus temperature plots clearly show that Na(+) ions are not totally mobile at room temperature on the NMR time scale. As the temperature increases, the line shape change of the (23)Na MAS NMR signal differs for the P2 and P'3 stackings and is interpreted by the differences of Na(+) ion sites and of sodium diffusion pathways in the two structures.

2.
ACS Appl Mater Interfaces ; 9(51): 44922-44930, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29210264

RESUMO

This article focuses on the surface reactivity of two spinel samples with different stoichiometries and crystal morphologies, namely Li1+xMn2-xO4 with x = 0.05 and 0.10. LiMn2O4 compounds are good candidates as positive electrode of high-power lithium-ion batteries for portable devices. The samples were investigated using both experimental and theoretical approaches. On the experimental point of view, they were characterized in depth from X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS) analyses. Then, the reactivity was investigated through the adsorption of (SO2) gaseous probes, in controlled conditions, followed by XPS characterization. First-principle calculations were conducted simultaneously to investigate the electronic properties and the reactivity of relevant surfaces of an ideal LiMn2O4 material. The results allow us to conclude that the reactivity of the samples is dominated by an acido-basic reactivity and the formation of sulfite species. Nonetheless, on the x = 0.05 sample, both sulfite and sulfate species are obtained, the later, in lesser extent, corresponding to a redox reactivity. Combining experimental and theoretical results, this redox reactivity could be associated with the presence of a larger quantity of Mn4+ cations on the last surface layers of the material linked to a specific surface orientation.

3.
ACS Appl Mater Interfaces ; 9(50): 44222-44230, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29188720

RESUMO

This article deals with the surface reactivity of (001)-oriented Li2MnO3 crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. Li2MnO3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO2 gas molecules on large Li2MnO3 crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO2 adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.

4.
Nat Commun ; 7: 13284, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808094

RESUMO

Li-ion batteries are invaluable for portable electronics and vehicle electrification. A better knowledge of compositional variations within the electrodes during battery operation is, however, still needed to keep improving their performance. Although essential in the medical field, magnetic resonance imaging of solid paramagnetic battery materials is challenging due to the short lifetime of their signals. Here we develop the scanning image-selected in situ spectroscopy approach, using the strongest commercially available magnetic field gradient. We demonstrate the 7Li magnetic resonance spectroscopic image of a 5 mm-diameter operating battery with a resolution of 100 µm. The time-resolved image-spectra enable the visualization in situ of the displacement of lithiation fronts inside thick paramagnetic electrodes during battery operation. Such observations are critical to identify the key limiting parameters for high-capacity and fast-cycling batteries. This non-invasive technique also offers opportunities to study devices containing paramagnetic materials while operating.

5.
Magn Reson Chem ; 43(10): 849-57, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16041774

RESUMO

A series of Li1-zNi1+zO2 materials have been synthesised by the coprecipitation route. An X-ray diffraction study was carried out on these materials using the Rietveld method to determine the departure from the ideal stoichiometry z, which ranges from 0 to 0.138. The actual Li/Ni ratio was also checked by chemical analyses using inductively coupled plasma (ICP) for each sample. The stoichiometric sample (z approximately 0) was obtained using a 15% Li excess. (6/7)Li NMR results from LiNiO2 (z approximately 0) show that the asymmetric shape of the NMR signal is due to anisotropy. Calculations give evidence that the paramagnetic dipolar interaction from the electron spins carried by Ni is anisotropic but does not completely explain the experimental anisotropy. (6)Li MAS NMR (magic angle spinning NMR) experiments and temperature standardisation NMR measurements unambiguously assign the isotropic position at +726 ppm. The static-echo NMR spectra of the non-stoichiometric Li1-zNi1+zO2 phases also exhibit an asymmetric shape whose width increases with the departure from the ideal stoichiometry z. (6/7)Li static and MAS NMR show that the 2zNi(2+) ions thus formed modify the dipolar interaction within the materials and also affect the Fermi contact interaction, since a distribution of Li environments is observed using (6)Li NMR for non-stoichiometric samples.


Assuntos
Lítio/química , Espectroscopia de Ressonância Magnética/métodos , Níquel/química , Oxigênio/química , Isótopos , Difração de Raios X
6.
Solid State Nucl Magn Reson ; 23(4): 243-62, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12787906

RESUMO

59Co and 23Na NMR has been applied to the layered cobalt oxides NaCoO(2) and HCoO(2) at three different magnetic field strengths (4.7, 7.1 and 11.7T). The 59Co and 23Na quadrupole and anisotropic shift tensors have been determined by iterative fitting of the NMR line shapes at the three magnetic field strengths. Due to the large 59Co quadrupole interaction in NaCoO(2), a frequency-swept irradiation procedure was used to alleviate the limited bandwidth of the excitation. While the 59Co and 23Na shift and quadrupole coupling tensors in NaCoO(2) are found to be coincident and axially symmetric in agreement with the crystal symmetry requirements, the fits of the 59Co NMR spectra clearly show the presence of structural disorder in HCoO(2). The 23Na chemical shift anisotropy can be reproduced by shift tensor calculations using a point dipole model and considering that the magnetic susceptibility in NaCoO(2) is due to Van Vleck paramagnetism for Co(3+). Electric field gradient calculations using either the empirical point charge model or the ab initio full potential-linearized augmented plane wave method are compared with the experimental NMR data.


Assuntos
Cobalto/química , Campos Eletromagnéticos , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Óxidos/química , Sódio/química , Cobalto/efeitos da radiação , Isótopos do Cobalto , Simulação por Computador , Cristalografia/métodos , Óxidos/efeitos da radiação , Sódio/efeitos da radiação , Isótopos de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA