Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 615(7952): 411-417, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922611

RESUMO

Early works1 and recent advances in thin-film lithium niobate (LiNbO3) on insulator have enabled low-loss photonic integrated circuits2,3, modulators with improved half-wave voltage4,5, electro-optic frequency combs6 and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces7. Although recent advances have demonstrated tunable integrated lasers based on LiNbO3 (refs. 8,9), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si3N4)-LiNbO3 photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si3N4 photonic integrated circuits with thin-film LiNbO3 through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration10, featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 1015 hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si3N4 photonic integrated circuits with LiNbO3 creates a platform that combines the individual advantages of thin-film LiNbO3 with those of Si3N4, which show precise lithographic control, mature manufacturing and ultralow loss11,12.

2.
Opt Lett ; 44(21): 5374-5377, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675010

RESUMO

Active frequency stabilization of a laser to an atomic or molecular resonance underpins many modern-day AMO physics experiments. With a flat background and high signal-to-noise ratio, modulation transfer spectroscopy (MTS) offers an accurate and stable method for laser locking. However, despite its benefits, the four-wave mixing process that is inherent to the MTS technique entails that the strongest modulation transfer signals are only observed for closed transitions, excluding MTS from numerous applications. Here we report for the first time, to the best of our knowledge, the observation of a magnetically tunable MTS error signal. Using a simple two-magnet arrangement, we show that the error signal for the Rb87F=2→F'=3 cooling transition can be Zeeman-shifted over a range of >15 GHzto any arbitrary point on the rubidium D2 spectrum. Modulation transfer signals for locking to the Rb87F=1→F'=2 repumping transition, as well as 1 GHz red-detuned to the cooling transition, are presented to demonstrate the versatility of this technique, which can readily be extended to the locking of Raman and lattice lasers.

3.
Nat Commun ; 14(1): 3499, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311746

RESUMO

The availability of thin-film lithium niobate on insulator (LNOI) and advances in processing have led to the emergence of fully integrated LiNbO3 electro-optic devices. Yet to date, LiNbO3 photonic integrated circuits have mostly been fabricated using non-standard etching techniques and partially etched waveguides, that lack the reproducibility achieved in silicon photonics. Widespread application of thin-film LiNbO3 requires a reliable solution with precise lithographic control. Here we demonstrate a heterogeneously integrated LiNbO3 photonic platform employing wafer-scale bonding of thin-film LiNbO3 to silicon nitride (Si3N4) photonic integrated circuits. The platform maintains the low propagation loss (<0.1 dB/cm) and efficient fiber-to-chip coupling (<2.5 dB per facet) of the Si3N4 waveguides and provides a link between passive Si3N4 circuits and electro-optic components with adiabatic mode converters experiencing insertion losses below 0.1 dB. Using this approach we demonstrate several key applications, thus providing a scalable, foundry-ready solution to complex LiNbO3 integrated photonic circuits.

4.
ACS Photonics ; 5(6): 2074-2080, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29963582

RESUMO

We demonstrate the formation and tuning of charged trion-polaritons in polymer-sorted (6,5) single-walled carbon nanotubes in a planar metal-clad microcavity at room temperature. The positively charged trion-polaritons were induced by electrochemical doping and characterized by angle-resolved reflectance and photoluminescence spectroscopy. The doping level of the nanotubes within the microcavity was controlled by the applied bias and thus enabled tuning from mainly excitonic to a mixture of exciton and trion transitions. Mode splitting of more than 70 meV around the trion energy and emission from the new lower polariton branch corroborate a transition from exciton-polaritons (neutral) to trion-polaritons (charged). The estimated charge-to-mass ratio of these trion-polaritons is 200 times higher than that of electrons or holes in carbon nanotubes, which has exciting implications for the realization of polaritonic charge transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA