Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Cell Physiol ; 64(12): 1494-1510, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37329302

RESUMO

Nucleotide limitation and imbalance is a well-described phenomenon in animal research but understudied in the plant field. A peculiarity of pyrimidine de novo synthesis in plants is the complex subcellular organization. Here, we studied two organellar localized enzymes in the pathway, with chloroplast aspartate transcarbamoylase (ATC) and mitochondrial dihydroorotate dehydrogenase (DHODH). ATC knock-downs were most severely affected, exhibiting low levels of pyrimidine nucleotides, a low energy state, reduced photosynthetic capacity and accumulation of reactive oxygen species. Furthermore, altered leaf morphology and chloroplast ultrastructure were observed in ATC mutants. Although less affected, DHODH knock-down mutants showed impaired seed germination and altered mitochondrial ultrastructure. Thus, DHODH might not only be regulated by respiration but also exert a regulatory function on this process. Transcriptome analysis of an ATC-amiRNA line revealed massive alterations in gene expression with central metabolic pathways being downregulated and stress response and RNA-related pathways being upregulated. In addition, genes involved in central carbon metabolism, intracellular transport and respiration were markedly downregulated in ATC mutants, being most likely responsible for the observed impaired growth. We conclude that impairment of the first committed step in pyrimidine metabolism, catalyzed by ATC, leads to nucleotide limitation and by this has far-reaching consequences on metabolism and gene expression. DHODH might closely interact with mitochondrial respiration, as seen in delayed germination, which is the reason for its localization in this organelle.


Assuntos
Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Nucleotídeos/genética , Nucleotídeos/metabolismo , Fotossíntese/genética , Expressão Gênica , Pirimidinas , Sementes/metabolismo
2.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838573

RESUMO

Aspartate transcarbamoylase (ATC) catalyzes the first committed step in pyrimidine de novo synthesis. As shown before, mutants with 80% reduced transcript and protein levels exhibit reduced levels of pyrimidine metabolites and thus nucleotide limitation and imbalance. Consequently, reduced photosynthetic capacity and growth, accompanied by massive transcriptional changes, were observed. Here, we show that nucleotide de novo synthesis was upregulated during cold acclimation of Arabidopsis thaliana (ecotype Columbia, Col-0) plants, but ATC knockdown mutants failed to acclimate to this condition as they did not accumulate neutral sugars and anthocyanins. A global transcriptome analysis revealed that most of the transcriptional changes observed in Col-0 plants upon cold exposure were also evident in ATC knockdown plants. However, several responses observed in cold-treated Col-0 plants could already be detected in knockdown plants when grown under standard conditions, suggesting that these mutants exhibited typical cold responses without prior cold stimulation. We believe that nucleotide signaling is involved in "cold-like priming" and "cold acclimation" in general. The observed transcript levels of genes involved in central carbon metabolism and respiration were an exception to these findings. These were upregulated in the cold but downregulated in warm-grown ATC mutants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Aspártico/metabolismo , Nucleotídeos/metabolismo , Regulação para Baixo , Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Aclimatação/fisiologia , Pirimidinas/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
3.
Plant J ; 106(1): 23-40, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368770

RESUMO

Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.


Assuntos
Folhas de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Camellia/genética , Camellia/metabolismo , Camellia/fisiologia , Chlamydomonas/genética , Chlamydomonas/metabolismo , Chlamydomonas/fisiologia , Folhas de Planta/genética , Biologia de Sistemas/métodos , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiologia
4.
J Exp Bot ; 72(20): 6867-6881, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34244747

RESUMO

The plant vacuole recycles proteins and RNA delivered to it by autophagy. In this study, by isolating intact vacuoles from Arabidopsis plants, followed by subsequent RNA purification, and deep sequencing, we provide a comprehensive characterization of Arabidopsis vacuolar RNAome. In the vacuolar RNAome, we detected ribosomal RNAs, transfer RNAs, including those of chloroplast origin, and in addition small RNA types. As autophagy is a main mechanism for the transport of RNA to the vacuole, atg5-1 mutants deficient in autophagy were included in our analysis. We observed severely reduced amounts of most chloroplast-derived RNA species in these mutants. Comparisons with cellular RNA composition provided an indication of possible up-regulation of alternative RNA breakdown pathways. By contrast, vacuolar RNA processing and composition in plants lacking vacuolar ribonuclease 2, involved in cellular RNA homeostasis, only showed minor alterations, possibly because of the presence of further so far unknown vacuolar RNase species. Among the small RNA types, we detected mature miRNAs in all vacuolar preparations but at much lower frequency in atg5-1, raising the possibility of a biological role for vacuolar miRNAs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autofagia/genética , RNA , Vacúolos
5.
Plant Physiol ; 180(4): 1816-1828, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31101721

RESUMO

The synthesis of pyrimidine nucleotides, an essential process in every organism, is accomplished by de novo synthesis or by salvaging pyrimdines from e.g. nucleic acid turnover. Here, we identify two Arabidopsis (Arabidopsis thaliana) uridine/cytidine kinases, UCK1 and UCK2, which are located in the cytosol and are responsible for the majority of pyrimidine salvage activity in vivo. In addition, the chloroplast has an active uracil salvage pathway. Uracil phosphoribosyltransferase (UPP) catalyzes the initial step in this pathway and is required for the establishment of photosynthesis, as revealed by analysis of upp mutants. The upp knockout mutants are unable to grow photoautotrophically, and knockdown mutants exhibit a variegated phenotype, with leaves that have chlorotic pale areas. Moreover, the upp mutants did not show altered expression of chloroplast-encoded genes, but transcript accumulation of the LIGHT HARVESTING COMPLEX B nuclear genes LHCB1.2 and LHCB2.3 was markedly reduced. An active UPP homolog from Escherichia coli failed to complement the upp mutant phenotype when targeted to the chloroplast, suggesting that the catalytic function of UPP is not the important factor for the chloroplast phenotype. Indeed, the expression of catalytically inactive Arabidopsis UPP, generated by introduction of point mutations, did complement the upp chloroplast phenotype. These results suggest that UPP has a vital function in chloroplast biogenesis unrelated to its catalytic activity and driven by a moonlighting function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Pirimidinas/metabolismo , Citidina/metabolismo , Regulação da Expressão Gênica de Plantas , Complexos de Proteínas Captadores de Luz/metabolismo , Pentosiltransferases/metabolismo , Fotossíntese , Uridina/metabolismo
6.
Plant Physiol ; 179(1): 248-264, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30409856

RESUMO

The chloroplast hosts photosynthesis and a variety of metabolic pathways that are essential for plant viability and acclimation processes. In this study, we show that the sole plastid UMP kinase (PUMPKIN) in Arabidopsis (Arabidopsis thaliana) associates specifically with the introns of the plastid transcripts trnG-UCC, trnV-UAC, petB, petD, and ndhA in vivo, as revealed by RNA immunoprecipitation coupled with deep sequencing (RIP-Seq); and that PUMPKIN can bind RNA efficiently in vitro. Analyses of target transcripts showed that PUMPKIN affects their metabolism. Null alleles and knockdowns of pumpkin were viable but clearly affected in growth, plastid translation, and photosynthetic performance. In pumpkin mutants, the levels of many plastid transcripts were reduced, while the amounts of others were increased, as revealed by RNA-Seq analysis. PUMPKIN is a homomultimeric, plastid-localized protein that forms in vivo RNA-containing megadalton-sized complexes and catalyzes the ATP-dependent conversion of UMP to UDP in vitro with properties characteristic of known essential eubacterial UMP kinases. A moonlighting function of PUMPKIN combining RNA and pyrimidine metabolism is discussed.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Núcleosídeo-Fosfato Quinase/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íntrons/genética , Fotossíntese , Plastídeos/enzimologia , Plastídeos/metabolismo
7.
Plant Physiol ; 179(3): 1093-1110, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30651302

RESUMO

Biochemical processes in chloroplasts are important for virtually all life forms. Tight regulation of protein homeostasis and the coordinated assembly of protein complexes, composed of both imported and locally synthesized subunits, are vital to plastid functionality. Protein biogenesis requires the action of cotranslationally acting molecular chaperones. One such chaperone is trigger factor (TF), which is known to cotranslationally bind most newly synthesized proteins in bacteria, thereby assisting their correct folding and maturation. However, how these processes are regulated in chloroplasts remains poorly understood. We report here functional investigation of chloroplast-localized TF (TIG1) in the green alga (Chlamydomonas reinhardtii) and the vascular land plant Arabidopsis (Arabidopsis thaliana). We show that chloroplastic TIG1 evolved as a specialized chaperone. Unlike other plastidic chaperones that are functionally interchangeable with their prokaryotic counterpart, TIG1 was not able to complement the broadly acting ortholog in Escherichia coli. Whereas general chaperone properties such as the prevention of aggregates or substrate recognition seems to be conserved between bacterial and plastidic TFs, plant TIG1s differed by associating with only a relatively small population of translating ribosomes. Furthermore, a reduction of plastidic TIG1 levels leads to deregulated protein biogenesis at the expense of increased translation, thereby disrupting the chloroplast energy household. This suggests a central role of TIG1 in protein biogenesis in the chloroplast.


Assuntos
Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Plantas/fisiologia , Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas
8.
Plant J ; 96(2): 316-328, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30030857

RESUMO

Cytidine triphosphate (CTP) is essential for DNA, RNA and phospholipid biosynthesis. De novo synthesis is catalyzed by CTP synthases (CTPS). Arabidopsis encodes five CTPS isoforms that unanimously share conserved motifs found across kingdoms, suggesting all five are functional enzymes. Whereas CTPS1-4 are expressed throughout Arabidopsis tissues, CTPS5 reveals exclusive expression in developing embryos. CTPS activity and substrates affinities were determined for a representative plant enzyme on purified recombinant CTPS3 protein. As demonstrated in model organisms such as yeast, fruit fly and mammals, CTPS show the capacity to assemble into large filaments called cytoophidia. Transient expression of N- and C-terminal YFP-CTPS fusion proteins in Nicotiana benthamiana allowed to monitor such filament formation. Interestingly, CTPS1 and 2 always appeared as soluble proteins, whereas filaments were observed for CTPS3, 4 and 5 independent of the YFP-tag location. However, when similar constructs were expressed in Saccharomyces cerevisiae, no filaments were observed, pointing to a requirement for organism-specific factors in vivo. Indications for filament assembly were also obtained in vitro when recombinant CTPS3 protein was incubated in the presence of CTP. T-DNA-insertion mutants in four CTPS loci revealed no apparent phenotypical alteration. In contrast, CTPS2 T-DNA-insertion mutants did not produce homozygous progenies. An initial characterization of the CTPS protein family members from Arabidopsis is presented. We provide evidence for their involvement in nucleotide de novo synthesis and show that only three of the five CTPS isoforms were able to form filamentous structures in the transient tobacco expression system. This represents a striking difference from previous observations in prokaryotes, yeast, Drosophila and mammalian cells. This finding will be highly valuable to further understand the role of filament formation to regulate CTPS activity.


Assuntos
Arabidopsis/enzimologia , Carbono-Nitrogênio Ligases/metabolismo , Citidina Trifosfato/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono-Nitrogênio Ligases/genética , Citoesqueleto/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
9.
Biochim Biophys Acta ; 1850(9): 1921-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26080001

RESUMO

BACKGROUND: Equilibrative nucleoside transporters (ENTs) facilitate the import of nucleosides and their analogs into cells in a bidirectional, non-concentrative manner. However, in contrast to their name, most characterized plant ENTs act in a concentrative manner. A direct characterization of any ENT protein has been hindered due to difficulties in overexpression and obtaining pure recombinant protein. METHODS: The equilibrative nucleoside transporter 7 from Arabidopsis thaliana (AtENT7) was expressed in Xenopus laevis oocytes to assess mechanism of substrate uptake. Recombinant protein fused to enhanced green fluorescent protein (eGFP) was expressed in Pichia pastoris to characterize its oligomeric state by gel filtration and substrate binding by microscale thermophoresis (MST). RESULTS: AtENT7 expressed in X. laevis oocytes works as a classic equilibrative transporter. The expression of AtENT7-eGFP in the P. pastoris system yielded milligram amounts of pure protein that exists as stable homodimers. The concentration dependent binding of purine and pyrimidine nucleosides to the purified recombinant protein, assessed by MST, confirmed that AtENT7-eGFP is properly folded. For the first time the binding of nucleobases was observed for AtENT7. SIGNIFICANCE: The availability of pure recombinant AtENT7 will permit detailed kinetic and structural studies of this unique member of the ENT family and, given the functional similarity to mammalian ENTs, will serve as a good model for understanding the structural basis of translocation mechanism for the family.


Assuntos
Arabidopsis/metabolismo , Proteínas de Transporte de Nucleosídeo Equilibrativas/genética , Proteínas Recombinantes/biossíntese , Animais , Proteínas de Transporte de Nucleosídeo Equilibrativas/isolamento & purificação , Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Oócitos , Xenopus laevis/genética
10.
Biochim Biophys Acta ; 1838(12): 3025-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25135661

RESUMO

Nucleobase ascorbate transporters (NATs), also known as Nucleobase:Cation-Symporter 2 (NCS2) proteins, belong to an evolutionary widespread family of transport proteins with members in nearly all domains of life. We present the biochemical characterization of two NAT proteins, NAT3 and NAT12 from Arabidopsis thaliana after their heterologous expression in Escherichia coli UraA knockout mutants. Both proteins were shown to transport adenine, guanine and uracil with high affinities. The apparent KM values were determined with 10.12µM, 4.85µM and 19.95µM, respectively for NAT3 and 1.74µM, 2.44µM and 29.83µM, respectively for NAT12. Competition studies with the three substrates suggest hypoxanthine as a further substrate of both transporters. Furthermore, the transport of nucleobases was markedly inhibited by low concentrations of a proton uncoupler indicating that NAT3 and NAT12 act as proton-nucleobase symporters. Transient expression studies of NAT-GFP fusion constructs revealed a localization of both proteins in the plasma membrane. Based on the structural information of the uracil permease UraA from E. coli, a three-dimensional experimentally validated homology model of NAT12 was created. The NAT12 structural model is composed of 14 TM segments and divided into two inverted repeats of TM1-7 and TM8-14. Docking studies and mutational analyses identified residues involved in NAT12 nucleobase binding including Ser-247, Phe-248, Asp-461, Thr-507 and Thr-508. This is the first study to provide insight into the structure-function of plant NAT proteins, which reveals differences from the other members of the NCS2 protein family.

11.
Plant Cell ; 24(4): 1549-59, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22474184

RESUMO

Nucleotide de novo synthesis is highly conserved among organisms and represents an essential biochemical pathway. In plants, the two initial enzymatic reactions of de novo pyrimidine synthesis occur in the plastids. By use of green fluorescent protein fusions, clear support is provided for a localization of the remaining reactions in the cytosol and mitochondria. This implies that carbamoyl aspartate, an intermediate of this pathway, must be exported and precursors of pyrimidine salvage (i.e., nucleobases or nucleosides) are imported into plastids. A corresponding uracil transport activity could be measured in intact plastids isolated from cauliflower (Brassica oleracea) buds. PLUTO (for plastidic nucleobase transporter) was identified as a member of the Nucleobase:Cation-Symporter1 protein family from Arabidopsis thaliana, capable of transporting purine and pyrimidine nucleobases. A PLUTO green fluorescent protein fusion was shown to reside in the plastid envelope after expression in Arabidopsis protoplasts. Heterologous expression of PLUTO in an Escherichia coli mutant lacking the bacterial uracil permease uraA allowed a detailed biochemical characterization. PLUTO transports uracil, adenine, and guanine with apparent affinities of 16.4, 0.4, and 6.3 µM, respectively. Transport was markedly inhibited by low concentrations of a proton uncoupler, indicating that PLUTO functions as a proton-substrate symporter. Thus, a protein for the absolutely required import of pyrimidine nucleobases into plastids was identified.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vias Biossintéticas , Proteínas de Transporte de Nucleobases/metabolismo , Nucleotídeos/biossíntese , Plastídeos/metabolismo , Pirimidinas/biossíntese , Simportadores/metabolismo , Adenina/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Vias Biossintéticas/efeitos dos fármacos , Brassica/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Guanina/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Transporte de Nucleobases/química , Proteínas de Transporte de Nucleobases/genética , Plastídeos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Cloreto de Sódio/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Simportadores/química , Simportadores/genética , Fatores de Tempo , Uracila/metabolismo
12.
Plant J ; 72(5): 732-44, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22788523

RESUMO

The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6-GFP is targeted to the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition of cell-wall hemicelluose, and higher sensitivity to the Golgi α-mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a 'mimic disease' phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte de Fosfato/genética , Alcaloides/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Brefeldina A/farmacologia , Parede Celular/química , Resistência à Doença , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Complexo de Golgi/genética , Mutação , Oryza/genética , Proteínas de Transporte de Fosfato/metabolismo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Pseudomonas syringae/patogenicidade , alfa-Manosidase/metabolismo
13.
Plant Commun ; 4(6): 100634, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37287225

RESUMO

The sessile lifestyle of plants requires an immediate response to environmental stressors that affect photosynthesis, growth, and crop yield. Here, we showed that three abiotic perturbations-heat, cold, and high light-triggered considerable changes in the expression signatures of 42 epitranscriptomic factors (writers, erasers, and readers) with putative chloroplast-associated functions that formed clusters of commonly expressed genes in Arabidopsis. The expression changes under all conditions were reversible upon deacclimation, identifying epitranscriptomic players as modulators in acclimation processes. Chloroplast dysfunctions, particularly those induced by the oxidative stress-inducing norflurazon in a largely GENOME UNCOUPLED-independent manner, triggered retrograde signals to remodel chloroplast-associated epitranscriptomic expression patterns. N6-methyladenosine (m6A) is known as the most prevalent RNA modification and impacts numerous developmental and physiological functions in living organisms. During cold treatment, expression of components of the primary nuclear m6A methyltransferase complex was upregulated, accompanied by a significant increase in cellular m6A mRNA marks. In the cold, the presence of FIP37, a core component of the writer complex, played an important role in positive regulation of thylakoid structure, photosynthetic functions, and accumulation of photosystem I, the Cytb6f complex, cyclic electron transport proteins, and Curvature Thylakoid1 but not that of photosystem II components and the chloroplast ATP synthase. Downregulation of FIP37 affected abundance, polysomal loading, and translation of cytosolic transcripts related to photosynthesis in the cold, suggesting m6A-dependent translational regulation of chloroplast functions. In summary, we identified multifaceted roles of the cellular m6A RNA methylome in coping with cold; these were predominantly associated with chloroplasts and served to stabilize photosynthesis.


Assuntos
Arabidopsis , RNA , RNA/metabolismo , Epigenoma , Luz , Fotossíntese/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Arabidopsis/metabolismo
14.
Plant J ; 65(5): 703-11, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21235647

RESUMO

Recently, the first plant nucleoside hydrolase, NSH1 (former designation URH1), was identified at the molecular level. This enzyme's highest hydrolysis capacity is for uridine, thereby balancing pyrimidine salvage and catabolism. NSH1 was found to be less efficient in the hydrolysis of further nucleosides. However, it remained unclear whether purine nucleosides are processed by NSH1. Moreover, the biochemical and physiological functions of further NSH isoforms in Arabidopsis has not been analyzed. Here we show that NSH1 is also able to hydrolyze xanthosine with high efficiency, and thus represents the leading activity in purine and pyrimidine breakdown in a cell. A knockout mutant for NSH1 showed symptoms of accelerated senescence, accompanied by marked accumulation of uridine and xanthosine under conditions of prolonged darkness. The closest, so far uncharacterized, homolog of NSH1, NSH2, was found to act during the late phase of senescence and may support inosine breakdown. NSH3, another NSH isoform, surprisingly functions as an extracellular, purine-specific hydrolase that is involved in degradation of extracellular nucleosides and may participate in wound and pathogen responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , N-Glicosil Hidrolases/metabolismo , Purinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Técnicas de Inativação de Genes , Mutagênese Insercional , Mutação , N-Glicosil Hidrolases/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Ribonucleosídeos/metabolismo , Xantinas
15.
Trends Plant Sci ; 27(6): 577-587, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35012879

RESUMO

Under natural environmental conditions, changes in light intensity and temperature are closely interwoven, and of all organelles, only chloroplasts react strongly upon alterations of these two parameters. We review increasing evidence indicating that changes in chloroplast metabolism are critical for the comprehensive cellular answer in a challenging environment. This cellular answer starts with rapid modifications of thylakoid-located processes, followed by modifications in the stroma and transport activities across the chloroplast envelope. We propose that the 'modulators' involved contribute to plant stress tolerance and that deciphering of their characteristics is essential to understand 'acclimation'. Especially in times of climatic changes, we must gain knowledge on physiological reactions that might become instrumental for directed breeding strategies aiming to develop stress-tolerant crop plants.


Assuntos
Cloroplastos , Melhoramento Vegetal , Cloroplastos/metabolismo , Luz , Fotossíntese , Plantas/metabolismo , Estresse Fisiológico/fisiologia , Temperatura , Tilacoides/metabolismo
16.
Front Plant Sci ; 13: 842156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360303

RESUMO

Cytidine triphosphate synthase (CTPS) catalyzes the final step in pyrimidine de novo synthesis. In Arabidopsis, this protein family consists of five members (CTPS1-5), and all of them localize to the cytosol. Specifically, CTPS4 showed a massive upregulation of transcript levels during abiotic stress, in line with increased staining of CTPS4 promoter:GUS lines in hypocotyl, root and to lesser extend leaf tissues. In a setup to study progressive drought stress, CTPS4 knockout mutants accumulated less fresh and dry weight at days 5-7 and showed impaired ability to recover from this stress after 3 days of rewatering. Surprisingly, a thorough physiological characterization of corresponding plants only revealed alterations in assimilation and accumulation of soluble sugars including those related to drought stress in the mutant. Bimolecular fluorescence complementation (BiFC) studies indicated the interaction of CTPS4 with other isoforms, possibly affecting cytoophidia (filaments formed by CTPS formation. Although the function of these structures has not been thoroughly investigated in plants, altered enzyme activity and effects on cell structure are reported in other organisms. CTPS activity is required for cell cycle progression and growth. Furthermore, drought can lead to the accumulation of reactive oxygen species (ROS) and by this, to DNA damage. We hypothesize that effects on the cell cycle or DNA repair might be relevant for the observed impaired reduced drought stress tolerance of CTPS4 mutants.

17.
J Exp Bot ; 62(15): 5623-32, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21865177

RESUMO

PYD1 (dihydropyrimidine dehydogenase) initiates the degradation of pyrimidine nucleobases and is located in plastids. In this study, a physiological analysis of PYD1 employing T-DNA knockout mutants and overexpressors was carried out. PYD1 knockout mutants were restricted in degradation of exogenously provided uracil and accumulated high uracil levels in plant organs throughout development, especially in dry seeds. Moreover, PYD1 knockout mutants showed delayed germination which was accompanied by low invertase activity and decreased monosaccharide levels. Abscisic acid (ABA) is an important regulator of seed germination, and ABA-responsive genes were deregulated in PYD1 knockout mutants. Together with an observed increased PYD1 expression in wild-type seedlings upon ABA treatment, an interference of PYD1 with ABA signalling can be assumed. Constitutive PYD1 overexpression mutants showed increased growth and higher seed number compared with wild-type and knockout mutant plants. During senescence PYD1 expression increased to allow uracil catabolism. From this it is concluded that early in development and during seed production PYD1 is needed to balance pyrimidine catabolism versus salvage.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Pirimidinas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Germinação/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Sementes/efeitos dos fármacos , Sementes/genética
18.
J Exp Bot ; 62(13): 4627-37, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21642237

RESUMO

ENT1 of Arabidopsis thaliana was the first member of the equilibrative nucleoside transporter (ENT) family to be identified in plants and characterized as a cellular, high-affinity nucleoside importer. Evidence is presented here for a tonoplast localization of ENT1 based on proteome data and Western blot analyses. Increased export of adenosine from reconstituted tonoplast preparations from 35S:ENT1 mutants compared with those from the wild type and ENT1-RNAi mutants support this view. Furthermore, increased vacuolar adenosine and vacuolar 2'3'-cAMP (an intermediate of RNA catabolism) contents in ENT1-RNAi mutants, but decreased contents of these metabolites in 35S:ENT1 over-expresser mutants, were observed. An up-regulation of the salvage pathway was detected in the latter mutants, leading to the conclusion that draining the vacuolar adenosine storage by ENT1 over-expression interferes with cellular nucleotide metabolism. As a consequence of the observed metabolic alterations 35S:ENT1 over-expresser mutants exhibited a smaller phenotypic appearance compared with wild-type plants. In addition, ENT1:RNAi mutants exhibited significantly lower in vitro germination of pollen and contained reduced internal and external ATP levels. This indicates that ENT1-mediated nucleosides, especially adenosine transport, is important for nucleotide metabolism, thus influencing growth and pollen germination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Germinação/fisiologia , Pólen/crescimento & desenvolvimento , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , AMP Cíclico/metabolismo , Proteínas de Transporte de Nucleosídeo Equilibrativas/genética , Transportador Equilibrativo 1 de Nucleosídeo/genética , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica de Plantas , Espaço Intracelular/metabolismo , Modelos Biológicos , Mutação/genética , Especificidade de Órgãos/genética , Pólen/anatomia & histologia , Pólen/genética , Pólen/fisiologia , Transporte Proteico , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Vacúolos/metabolismo
19.
Front Plant Sci ; 12: 652434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936137

RESUMO

Pyrimidine de novo synthesis is an essential pathway in all organisms. The final and rate-limiting step in the synthesis of the nucleotide cytidine triphosphate (CTP) is catalyzed by CTP synthase (CTPS), and Arabidopsis harbors five isoforms. Single mutant lines defective in each one of the four isoforms do not show apparent phenotypical alterations in comparison to wild-type plants. However, Arabidopsis lines that contain T-DNA insertions in the CTPS2 gene were unable to produce homozygous offspring. Here, we show that CTPS2 exhibits a distinct expression pattern throughout embryo development, and loss-of-function mutants are embryo lethal, as siliques from +/ctps2 plants contained nearly 25% aborted seeds. This phenotype was rescued by complementation with CTPS2 under control of its endogenous promoter. CTPS2::GFP lines revealed expression only in the tip of columella cells in embryo root tips of the heart and later stages. Furthermore, CTPS2 expression in mature roots, most pronounced in the columella cells, shoots, and vasculature tissue of young seedlings, was observed. Filial generations of +/ctps2 plants did not germinate properly, even under external cytidine supply. During embryo development, the CTPS2 expression pattern resembled the established auxin reporter DR5::GFP. Indeed, the cloned promoter region we used in this study possesses a repeat of an auxin response element, and auxin supply increased CTPS2 expression in a cell-type-specific manner. Thus, we conclude that CTPS2 is essential for CTP supply in developing embryos, and loss-of-function mutants in CTPS2 are embryo lethal.

20.
Cells ; 10(2)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567681

RESUMO

The trans-membrane carrier AtENT3 is known to transport externally supplied cytokinin ribosides and thus promote uptake by cells. However, its role in distributing either exogenous or endogenous cytokinins within the intact plant has not hitherto been reported. To test this, we used ent3-1 mutant Arabidopsis seedlings in which the gene is not expressed due to a T-DNA insertion, and examined the effect on the concentration and distribution of either endogenous cytokinins or exogenous trans-zeatin riboside applied to the roots. In the mutant, accumulation of endogenous cytokinins in the roots was reduced and capacity to deliver externally supplied trans-zeatin riboside to the shoots was increased suggesting involvement of equilibrative nucleoside (ENT) transporter in the control of cytokinin distribution in the plants. Roots of ent3-1 were longer in the mutant in association with their lower cytokinin concentration. We concluded that the ENT3 transporter participates in partitioning endogenous cytokinins between the apoplast and the symplast by facilitating their uptake by root cells thereby limiting cytokinin export to the shoots through the xylem. Dilution of the mineral nutrient solution lowered endogenous cytokinin concentration in the roots of both wild type (WT) and ent3-1 plants accompanied by promotion of root elongation. Nevertheless, cytokinin content was lower, while roots were longer in the ent3-1 mutant than in the WT under either normal or deficient mineral nutrition suggesting a significant role of ENT3 transporter in the control of cytokinin level in the roots and the rate of their elongation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Mutação/genética , Raízes de Plantas/anatomia & histologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA