Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 590(7846): 428-432, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568809

RESUMO

The atmospheric concentration of trichlorofluoromethane (CFC-11) has been in decline since the production of ozone-depleting substances was phased out under the Montreal Protocol1,2. Since 2013, the concentration decline of CFC-11 slowed unexpectedly owing to increasing emissions, probably from unreported production, which, if sustained, would delay the recovery of the stratospheric ozone layer1-12. Here we report an accelerated decline in the global mean CFC-11 concentration during 2019 and 2020, derived from atmospheric concentration measurements at remote sites around the world. We find that global CFC-11 emissions decreased by 18 ± 6 gigagrams per year (26 ± 9 per cent; one standard deviation) from 2018 to 2019, to a 2019 value (52 ± 10 gigagrams per year) that is similar to the 2008-2012 mean. The decline in global emissions suggests a substantial decrease in unreported CFC-11 production. If the sharp decline in unexpected global emissions and unreported production is sustained, any associated future ozone depletion is likely to be limited, despite an increase in the CFC-11 bank (the amount of CFC-11 produced, but not yet emitted) by 90 to 725 gigagrams by the beginning of 2020.

2.
Nature ; 590(7846): 433-437, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568814

RESUMO

Emissions of ozone-depleting substances, including trichlorofluoromethane (CFC-11), have decreased since the mid-1980s in response to the Montreal Protocol1,2. In recent years, an unexpected increase in CFC-11 emissions beginning in 2013 has been reported, with much of the global rise attributed to emissions from eastern China3,4. Here we use high-frequency atmospheric mole fraction observations from Gosan, South Korea and Hateruma, Japan, together with atmospheric chemical transport-model simulations, to investigate regional CFC-11 emissions from eastern China. We find that CFC-11 emissions returned to pre-2013 levels in 2019 (5.0 ± 1.0 gigagrams per year in 2019, compared to 7.2 ± 1.5 gigagrams per year for 2008-2012, ±1 standard deviation), decreasing by 10 ± 3 gigagrams per year since 2014-2017. Furthermore, we find that in this region, carbon tetrachloride (CCl4) and dichlorodifluoromethane (CFC-12) emissions-potentially associated with CFC-11 production-were higher than expected after 2013 and then declined one to two years before the CFC-11 emissions reduction. This suggests that CFC-11 production occurred in eastern China after the mandated global phase-out, and that there was a subsequent decline in production during 2017-2018. We estimate that the amount of the CFC-11 bank (the amount of CFC-11 produced, but not yet emitted) in eastern China is up to 112 gigagrams larger in 2019 compared to pre-2013 levels, probably as a result of recent production. Nevertheless, it seems that any substantial delay in ozone-layer recovery has been avoided, perhaps owing to timely reporting3,4 and subsequent action by industry and government in China5,6.

3.
Proc Natl Acad Sci U S A ; 121(30): e2400168121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008662

RESUMO

The perfluorocarbons tetrafluoromethane (CF4, PFC-14) and hexafluoroethane (C2F6, PFC-116) are potent greenhouse gases with near-permanent atmospheric lifetimes relative to human timescales and global warming potentials thousands of times that of CO2. Using long-term atmospheric observations from a Chinese network and an inverse modeling approach (top-down method), we determined that CF4 emissions in China increased from 4.7 (4.2-5.0, 68% uncertainty interval) Gg y-1 in 2012 to 8.3 (7.7-8.9) Gg y-1 in 2021, and C2F6 emissions in China increased from 0.74 (0.66-0.80) Gg y-1 in 2011 to 1.32 (1.24-1.40) Gg y-1 in 2021, both increasing by approximately 78%. Combined emissions of CF4 and C2F6 in China reached 78 Mt CO2-eq in 2021. The absolute increase in emissions of each substance in China between 2011-2012 and 2017-2020 was similar to (for CF4), or greater than (for C2F6), the respective absolute increase in global emissions over the same period. Substantial CF4 and C2F6 emissions were identified in the less-populated western regions of China, probably due to emissions from the expanding aluminum industry in these resource-intensive regions. It is likely that the aluminum industry dominates CF4 emissions in China, while the aluminum and semiconductor industries both contribute to C2F6 emissions. Based on atmospheric observations, this study validates the emission magnitudes reported in national bottom-up inventories and provides insights into detailed spatial distributions and emission sources beyond what is reported in national bottom-up inventories.

4.
Environ Sci Technol ; 58(26): 11606-11614, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874561

RESUMO

Global atmospheric emissions of perfluorocyclobutane (c-C4F8, PFC-318), a potent greenhouse gas, have increased rapidly in recent years. Combining atmospheric observations made at nine Chinese sites with a Lagrangian dispersion model-based Bayesian inversion technique, we show that PFC-318 emissions in China grew by approximately 70% from 2011 to 2020, rising from 0.65 (0.54-0.72) Gg year-1 in 2011 to 1.12 (1.05-1.19) Gg year-1 in 2020. The PFC-318 emission increase from China played a substantial role in the overall increase in global emissions during the study period, contributing 58% to the global total emission increase. This growth predominantly originated in eastern China. The regions with high emissions of PFC-318 in China overlap with areas densely populated with polytetrafluoroethylene (PTFE) factories, implying that fluoropolymer factories are important sources of PFC-318 emissions in China. Our investigation reveals an emission factor of approximately 3.02 g of byproduct PFC-318 emissions per kg of hydrochlorofluorocarbon-22 (HCFC-22) feedstock use in the production of tetrafluoroethylene (TFE) (for PTFE production) and hexafluoropropylene (HFP) if we assume all HCFC-22 produced for feedstock uses in China are pyrolyzed to produce PTFE and HFP. Further facility-level sampling and analysis are needed for a more precise evaluation of emissions from these factories.


Assuntos
Poluentes Atmosféricos , Atmosfera , China , Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Fluorocarbonos/análise , Teorema de Bayes , Politetrafluoretileno , Ciclobutanos
5.
Environ Sci Technol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009035

RESUMO

Nitrogen trifluoride (NF3) is a potent and long-lived greenhouse gas that is widely used in the manufacture of semiconductors, photovoltaic cells, and flat panel displays. Using atmospheric observations from eight monitoring stations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and inverse modeling with a global 3-D atmospheric chemical transport model (GEOS-Chem), we quantify global and regional NF3 emission from 2015 to 2021. We find that global emissions have grown from 1.93 ± 0.58 Gg yr-1 (± one standard deviation) in 2015 to 3.38 ± 0.61 Gg yr-1 in 2021, with an average annual increase of 10% yr-1. The available observations allow us to attribute significant emissions to China (0.93 ± 0.15 Gg yr-1 in 2015 and 1.53 ± 0.20 Gg yr-1 in 2021) and South Korea (0.38 ± 0.07 Gg yr-1 to 0.65 ± 0.10 Gg yr-1). East Asia contributes around 73% of the global NF3 emission increase from 2015 to 2021: approximately 41% of the increase is from emissions from China (with Taiwan included), 19% from South Korea, and 13% from Japan. For Japan, which is the only one of these three countries to submit annual NF3 emissions to UNFCCC, our bottom-up and top-down estimates are higher than reported. With increasing demand for electronics, especially flat panel displays, emissions are expected to further increase in the future.

6.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495345

RESUMO

Global and regional atmospheric measurements and modeling can play key roles in discovering and quantifying unexpected nascent emissions of environmentally important substances. We focus here on three hydrochlorofluorocarbons (HCFCs) that are restricted by the Montreal Protocol because of their roles in stratospheric ozone depletion. Based on measurements of archived air samples and on in situ measurements at stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, we report global abundances, trends, and regional enhancements for HCFC-132b ([Formula: see text]), which is newly discovered in the atmosphere, and updated results for HCFC-133a ([Formula: see text]) and HCFC-31 ([Formula: see text]ClF). No purposeful end-use is known for any of these compounds. We find that HCFC-132b appeared in the atmosphere 20 y ago and that its global emissions increased to 1.1 Gg⋅y-1 by 2019. Regional top-down emission estimates for East Asia, based on high-frequency measurements for 2016-2019, account for ∼95% of the global HCFC-132b emissions and for ∼80% of the global HCFC-133a emissions of 2.3 Gg⋅y-1 during this period. Global emissions of HCFC-31 for the same period are 0.71 Gg⋅y-1 Small European emissions of HCFC-132b and HCFC-133a, found in southeastern France, ceased in early 2017 when a fluorocarbon production facility in that area closed. Although unreported emissive end-uses cannot be ruled out, all three compounds are most likely emitted as intermediate by-products in chemical production pathways. Identification of harmful emissions to the atmosphere at an early stage can guide the effective development of global and regional environmental policy.

7.
Environ Sci Technol ; 57(37): 13925-13936, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37656597

RESUMO

Emissions of chloroform (CHCl3), a short-lived halogenated substance not currently controlled under the Montreal Protocol on Substances that Deplete the Ozone Layer, are offsetting some of the achievements of the Montreal Protocol. In this study, emissions of CHCl3 from China were derived by atmospheric measurement-based "top-down" inverse modeling and a sector-based "bottom-up" inventory method. Top-down CHCl3 emissions grew from 78 (72-83) Gg yr-1 in 2011 to a maximum of 193 (178-204) Gg yr-1 in 2017, followed by a decrease to 147 (138-154) Gg yr-1 in 2018, after which emissions remained relatively constant through 2020. The changes in emissions from China could explain all of the global changes during the study period. The CHCl3 emissions in China were dominated by anthropogenic sources, such as byproduct emissions during disinfection and leakage from chloromethane industries. Had emissions continued to grow at the rate observed up to 2017, a delay of several years in Antarctic ozone layer recovery could have occurred. However, this delay will be largely avoided if global CHCl3 emissions remain relatively constant in the future, as they have between 2018 and 2020.


Assuntos
Clorofórmio , Ozônio Estratosférico , Regiões Antárticas , China , Desinfecção
8.
Proc Natl Acad Sci U S A ; 114(21): 5373-5377, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28416657

RESUMO

The growth in global methane (CH4) concentration, which had been ongoing since the industrial revolution, stalled around the year 2000 before resuming globally in 2007. We evaluate the role of the hydroxyl radical (OH), the major CH4 sink, in the recent CH4 growth. We also examine the influence of systematic uncertainties in OH concentrations on CH4 emissions inferred from atmospheric observations. We use observations of 1,1,1-trichloroethane (CH3CCl3), which is lost primarily through reaction with OH, to estimate OH levels as well as CH3CC3 emissions, which have uncertainty that previously limited the accuracy of OH estimates. We find a 64-70% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH4 emissions increased relatively steadily during the late 1990s and early 2000s, after which growth was more modest. This solution obviates the need for a sudden statistically significant change in total CH4 emissions around the year 2007 to explain the atmospheric observations and can explain some of the decline in the atmospheric 13CH4/12CH4 ratio and the recent growth in C2H6 Our approach indicates that significant OH-related uncertainties in the CH4 budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH4 emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered.

9.
Proc Natl Acad Sci U S A ; 112(19): 5927-31, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918401

RESUMO

We infer global and regional emissions of five of the most abundant hydrofluorocarbons (HFCs) using atmospheric measurements from the Advanced Global Atmospheric Gases Experiment and the National Institute for Environmental Studies, Japan, networks. We find that the total CO2-equivalent emissions of the five HFCs from countries that are required to provide detailed, annual reports to the United Nations Framework Convention on Climate Change (UNFCCC) increased from 198 (175-221) Tg-CO2-eq ⋅ y(-1) in 2007 to 275 (246-304) Tg-CO2-eq ⋅ y(-1) in 2012. These global warming potential-weighted aggregated emissions agree well with those reported to the UNFCCC throughout this period and indicate that the gap between reported emissions and global HFC emissions derived from atmospheric trends is almost entirely due to emissions from nonreporting countries. However, our measurement-based estimates of individual HFC species suggest that emissions, from reporting countries, of the most abundant HFC, HFC-134a, were only 79% (63-95%) of the UNFCCC inventory total, while other HFC emissions were significantly greater than the reported values. These results suggest that there are inaccuracies in the reporting methods for individual HFCs, which appear to cancel when aggregated together.

10.
Proc Natl Acad Sci U S A ; 110(6): 2029-34, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23341630

RESUMO

Nitrogen trifluoride (NF(3)) has potential to make a growing contribution to the Earth's radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF(3) in 2011 were 1.18 ± 0.21 Gg⋅y(-1), or ∼20 Tg CO(2)-eq⋅y(-1) (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF(3)). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y(-2) over the prior decade. In terms of CO(2) equivalents, current NF(3) emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF(3) over hexafluoroethane (C(2)F(6)) in electronics manufacture is significant-emissions of between 53 and 220 Tg CO(2)-eq⋅y(-1) were avoided during 2011. Despite these savings, total NF(3) emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF(3) emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA