RESUMO
PURPOSE: Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION). METHODS: PCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation. RESULTS: A definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants. CONCLUSION: GS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.
Assuntos
Exoma , Oftalmopatias , Humanos , Estudos Prospectivos , Sequência de Bases , RNA , Oftalmopatias/diagnóstico , Oftalmopatias/genéticaRESUMO
MeCP2 is associated with Rett syndrome (RTT), MECP2 duplication syndrome, and a number of conditions with isolated features of these diseases, including autism, intellectual disability, and motor dysfunction. MeCP2 is known to broadly bind methylated DNA, but the precise molecular mechanism driving disease pathogenesis remains to be determined. Using proximity-dependent biotinylation (BioID), we identified a transcription factor 20 (TCF20) complex that interacts with MeCP2 at the chromatin interface. Importantly, RTT-causing mutations in MECP2 disrupt this interaction. TCF20 and MeCP2 are highly coexpressed in neurons and coregulate the expression of key neuronal genes. Reducing Tcf20 partially rescued the behavioral deficits caused by MECP2 overexpression, demonstrating a functional relationship between MeCP2 and TCF20 in MECP2 duplication syndrome pathogenesis. We identified a patient exhibiting RTT-like neurological features with a missense mutation in the PHF14 subunit of the TCF20 complex that abolishes the MeCP2-PHF14-TCF20 interaction. Our data demonstrate the critical role of the MeCP2-TCF20 complex for brain function.
Assuntos
Proteína 2 de Ligação a Metil-CpG/metabolismo , Complexos Multiproteicos/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Animais , Biomarcadores , Encéfalo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Mutação , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Sinapses/metabolismo , Fatores de Transcrição/genéticaRESUMO
FEZF2 encodes a transcription factor critical to neurodevelopment that regulates other neurodevelopment genes. Rare variants in FEZF2 have previously been suggested to play a role in autism, and cases of 3p14 microdeletions that include FEZF2 share a neurodevelopmental phenotype including mild dysmorphic features and intellectual disability. We identified seven heterozygous predicted deleterious variants in FEZF2 (three frameshifts, one recurrent missense in two independent cases, one nonsense, and one complete gene deletion) in unrelated individuals with neurodevelopmental disorders including developmental delay/intellectual disability, autism, and/or attention-deficit/hyperactivity. Variants were confirmed to be de novo in five of seven cases and paternally inherited from an affected father in one. Predicted deleterious variants in FEZF2 may affect the expression of genes that are involved in fate choice pathways in developing neurons, and thus contribute to the neurodevelopmental phenotype. Future studies are needed to clarify the mechanism by which FEZF2 leads to this neurodevelopmental disorder.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Fenótipo , Humanos , Masculino , Feminino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Criança , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Pré-Escolar , Adolescente , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Fatores de TranscriçãoRESUMO
BACKGROUND: Fetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved. METHODS: We performed in-depth clinical characterisation and exome sequencing on a cohort of 23 FA index cases sharing arthrogryposis as a common feature. RESULTS: We identified likely pathogenic or pathogenic variants in 12 different established disease genes explaining the disease phenotype in 13 index cases and report 12 novel variants. In the unsolved families, a search for recessive-type variants affecting the same gene was performed; and in five affected fetuses of two unrelated families, a homozygous loss-of-function variant in the kinesin family member 21A gene (KIF21A) was found. CONCLUSION: Our study underlines the broad locus heterogeneity of FA with well-established and atypical genotype-phenotype associations. We describe KIF21A as a new factor implicated in the pathogenesis of severe neurogenic FA sequence with arthrogryposis of multiple joints, pulmonary hypoplasia and facial dysmorphisms. This hypothesis is further corroborated by a recent report on overlapping phenotypes observed in Kif21a null piglets.
Assuntos
Artrogripose , Humanos , Animais , Suínos , Mutação/genética , Artrogripose/genética , Artrogripose/patologia , Perda de Heterozigosidade , Feto , Fenótipo , Linhagem , Cinesinas/genéticaRESUMO
We report bi-allelic pathogenic HPDL variants as a cause of a progressive, pediatric-onset spastic movement disorder with variable clinical presentation. The single-exon gene HPDL encodes a protein of unknown function with sequence similarity to 4-hydroxyphenylpyruvate dioxygenase. Exome sequencing studies in 13 families revealed bi-allelic HPDL variants in each of the 17 individuals affected with this clinically heterogeneous autosomal-recessive neurological disorder. HPDL levels were significantly reduced in fibroblast cell lines derived from more severely affected individuals, indicating the identified HPDL variants resulted in the loss of HPDL protein. Clinical presentation ranged from severe, neonatal-onset neurodevelopmental delay with neuroimaging findings resembling mitochondrial encephalopathy to milder manifestation of adolescent-onset, isolated hereditary spastic paraplegia. All affected individuals developed spasticity predominantly of the lower limbs over the course of the disease. We demonstrated through bioinformatic and cellular studies that HPDL has a mitochondrial localization signal and consequently localizes to mitochondria suggesting a putative role in mitochondrial metabolism. Taken together, these genetic, bioinformatic, and functional studies demonstrate HPDL is a mitochondrial protein, the loss of which causes a clinically variable form of pediatric-onset spastic movement disorder.
Assuntos
Encefalopatias/genética , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Alelos , Sequência de Aminoácidos , Criança , Feminino , Humanos , Masculino , Mitocôndrias/genética , Linhagem , Fenótipo , Adulto JovemRESUMO
PURPOSE: Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS: We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS: The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION: This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.
Assuntos
Braquidactilia , Nanismo , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nanismo/genética , Obesidade/genética , Fenótipo , Proteína-Arginina N-Metiltransferases/genéticaRESUMO
BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.
Assuntos
Proteínas Mitocondriais , Ubiquinona , Linhagem Celular , Criança , Humanos , Recém-Nascido , Proteínas Mitocondriais/genética , Neuroimagem , Fenótipo , Ubiquinona/genética , Ubiquinona/metabolismoRESUMO
Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modeling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders.
Assuntos
Deficiência Intelectual , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Fatores de Transcrição , Humanos , Deficiência Intelectual/diagnóstico , Transtornos dos Movimentos/complicações , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/complicações , Convulsões/genética , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Donation after circulatory death (DCD) represents up to 40% of used kidney grafts. While studies have shown similar outcomes compared with donation after brain death (DBD) in the short term and mid-term, no data on long-term outcomes exist. METHODS: We retrospectively analysed patients transplanted at our institution between January 1985 and March 2000. All DCD recipients were matched one-to-one with patients transplanted with DBD grafts during this period according to sex, age and year of transplantation and followed up until December 2020. During this period, 1133 kidney transplantations were performed, of which 122 were with a DCD graft. RESULTS: The median graft survival after 35 years of follow-up was 23 years [277 months {95% confidence interval (CI) 182-372}] in DBD recipients and 24.5 years [289 months (95% CI 245-333)] in DCD recipients (P = 0.65; hazard ratio 0.91). Delayed graft function occurred in 47 patients in the DCD group compared with 23 in the DBD group (P < 0.001), albeit without a significant long-term outcome difference in graft or patient survival. We could not show any difference in graft function in terms of creatinine levels (133 versus 119 µmol/L), proteinuria (370 versus 240 mg/24 h) and glomerular filtration rate slope (-0.6 versus -0.3 mL/min/year) between the two groups for graft survival >20 years. CONCLUSIONS: This is the first study to show similar graft survival and function in DCD kidneys compared with DBD kidneys after 35 years of follow-up. DCD grafts are a valuable resource and can be utilized in the same way as DBD grafts.
Assuntos
Doadores de Tecidos , Obtenção de Tecidos e Órgãos , Morte Encefálica , Morte , Sobrevivência de Enxerto , Humanos , Rim , Estudos RetrospectivosRESUMO
OBJECTIVES: To examine the diagnostic yield of trio exome sequencing in fetuses with multiple structural defects with no pathogenic findings in cytogenetic and microarray analyses. METHODS: We recruited 51 fetuses with two or more defects, non-immune fetal hydrops or fetal akinesia deformation syndrome|or fetal akinesia deformation sequence (FADS). Trio exome sequencing was performed on DNA from chorionic villi samples and parental blood. Detection of genomic variation and prioritization of clinically relevant variants was performed according to in-house standard operating procedures. RESULTS: Median maternal and gestational age was 32.0 years and 21.0 weeks, respectively. Forty-three (84.3%) fetuses had two or more affected organ systems. The remaining fetuses had isolated fetal hydrops or FADS. In total, the exome analysis established the genetic cause for the clinical abnormalities in 22 (43.1%, 95% CI 29.4%-57.8%) pregnancies. CONCLUSIONS: In fetuses with multiple defects, hydrops or FADS and normal standard genetic results, trio exome sequencing has the potential to identify genetic anomalies in more than 40% of cases.
Assuntos
Exoma , Hidropisia Fetal , Adulto , Feminino , Feto/diagnóstico por imagem , Humanos , Hidropisia Fetal/genética , Pais , Gravidez , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal , Sequenciamento do Exoma/métodosRESUMO
PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants. METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing. RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies. CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.
Assuntos
Transtorno do Espectro Autista , Encefalopatias , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Encéfalo , Proteína 4 Homóloga a Disks-Large/genética , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , FenótipoRESUMO
Background: Variants in the phospholipase C gamma 2 (PLCG2) gene can cause PLCG2-associated antibody deficiency and immune dysregulation (PLAID)/autoinflammation and PLCG2-associated antibody deficiency and immune dysregulation (APLAID) syndrome. Linking the clinical phenotype with the genotype is relevant in making the final diagnosis. Methods: This is a single center case series of five related patients (4−44 years), with a history of autoinflammation and immune dysregulation. Clinical and laboratory characteristics were recorded and a literature review of APLAID/PLAID was performed. Results: All patients had recurrent fevers, conjunctivitis, lymphadenopathy, headaches, myalgia, abdominal pain, cold-induced urticaria and recurrent airway infections. Hearing loss was detected in two patients. Inflammatory parameters were slightly elevated during flares. Unswitched B-cells were decreased. Naïve IgD+CD27− B-cells and unswitched IgD+CD27+ B-cells were decreased; switched IgD-CD27+ B-cells were slightly increased. T-cell function was normal. Genetic testing revealed a heterozygous missense variant (c.77C>T, p.Thr26Met) in the PLCG2 gene in all patients. Genotype and phenotype characteristics were similar to previously published PLAID (cold-induced urticaria) and APLAID (eye inflammation, musculoskeletal complaints, no circulating antibodies) patients. Furthermore, they displayed characteristics for both PLAID and APLAID (recurrent infections, abdominal pain/diarrhea) with normal T-cell function. Conclusion: The heterozygous missense PLCG2 gene variant (c.77C>T, p.Thr26Met) might cause phenotypical overlap of PLAID and APLAID patterns.
RESUMO
Autophagy is controlled by AMPK and mTOR, both of which associate with ULK1 and control the production of phosphatidylinositol 3-phosphate (PtdIns3P), a prerequisite for autophagosome formation. Here we report that WIPI3 and WIPI4 scaffold the signal control of autophagy upstream of PtdIns3P production and have a role in the PtdIns3P effector function of WIPI1-WIPI2 at nascent autophagosomes. In response to LKB1-mediated AMPK stimulation, WIPI4-ATG2 is released from a WIPI4-ATG2/AMPK-ULK1 complex and translocates to nascent autophagosomes, controlling their size, to which WIPI3, in complex with FIP200, also contributes. Upstream, WIPI3 associates with AMPK-activated TSC complex at lysosomes, regulating mTOR. Our WIPI interactome analysis reveals the scaffold functions of WIPI proteins interconnecting autophagy signal control and autophagosome formation. Our functional kinase screen uncovers a novel regulatory link between LKB1-mediated AMPK stimulation that produces a direct signal via WIPI4, and we show that the AMPK-related kinases NUAK2 and BRSK2 regulate autophagy through WIPI4.
Assuntos
Autofagia , Proteínas de Transporte/química , Proteínas Serina-Treonina Quinases/química , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/química , Proteínas Relacionadas à Autofagia/química , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Lisossomos/metabolismo , Fagossomos/metabolismo , Fosfatos de Fosfatidilinositol/química , Ligação Proteica , Conformação Proteica , Proteínas de Transporte Vesicular/químicaRESUMO
The expansion of a polyglutamine repeat in huntingtin (HTT) causes Huntington disease (HD). Although the exact pathogenesis is not entirely understood, mutant huntingtin (mHTT) causes disruption of various cellular functions, formation of aggregates and ultimately cell death. The process of autophagy is the main degradation pathway for mHTT, and various studies have demonstrated that the induction of autophagy leads to an amelioration of aggregate formation and an increase in cell viability. Commonly, this is achieved by inhibition of the mammalian target of rapamycin (mTOR), a prominent regulator of cell metabolism. Alternatively, non-canonical AMPK or mTOR-independent autophagy regulation has been recognized. Given mTOR's involvement in major cellular pathways besides autophagy, its inhibition may come with potentially detrimental effects. Here, we investigated if AMPK activation may provide a target for the induction of autophagy in an mTOR-independent manner. We demonstrate that activation of AMPK by A769662 and overexpression of a constitutively active form of AMPKα in STHdh cells and mouse embryonic fibroblasts (MEFs), leads to increased expression of the autophagosomal markers LC3 and p62, suggesting efficient autophagy induction. The induction of autophagy was independent of mTOR, and accompanied by a decrease of mHTT-containing aggregates as well as improved cell viability. Therefore, we validated AMPK as a promising therapeutic target to treat HD, and identified A769662 as a potential therapeutic compound to facilitate the clearance of mHTT.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Doença de Huntington/enzimologia , Doença de Huntington/patologia , Animais , Autofagia/efeitos dos fármacos , Compostos de Bifenilo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Técnicas de Introdução de Genes/métodos , Células HEK293 , Humanos , Doença de Huntington/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Pironas/farmacologia , Pironas/uso terapêutico , Tiofenos/farmacologia , Tiofenos/uso terapêuticoRESUMO
Despite the availability of a large pool of experimental approaches and hypothetical considerations, the hunt for the enigmatic membrane origin of autophagosomes is still on. In mammalian cells proposed scenarios for the formation of the autophagosomal membrane include both de novo assembly, and rearrangements plus maturation of pre-existing membrane sections from the endoplasmic reticulum (ER), plasma membrane, Golgi or mitochondria. Earlier, we identified the human WD-repeat protein interacting with phosphoinositides (WIPI) family and showed that WIPI proteins function as essential phosphatidylinositol 3-phosphate (PtdIns3P) effectors at the nascent autophagosome. Interestingly, WIPI proteins localize to both pre-existing endomembranes and nascent autophagosomes. In this context, and on the basis of historical records on the formation of autophagosomes, we discuss with appropriate modesty an alternative perspective on the membrane origin of autophagosomes.