Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 581(7808): 316-322, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433612

RESUMO

Toll-like receptors (TLRs) have a crucial role in the recognition of pathogens and initiation of immune responses1-3. Here we show that a previously uncharacterized protein encoded by CXorf21-a gene that is associated with systemic lupus erythematosus4,5-interacts with the endolysosomal transporter SLC15A4, an essential but poorly understood component of the endolysosomal TLR machinery also linked to autoimmune disease4,6-9. Loss of this type-I-interferon-inducible protein, which we refer to as 'TLR adaptor interacting with SLC15A4 on the lysosome' (TASL), abrogated responses to endolysosomal TLR agonists in both primary and transformed human immune cells. Deletion of SLC15A4 or TASL specifically impaired the activation of the IRF pathway without affecting NF-κB and MAPK signalling, which indicates that ligand recognition and TLR engagement in the endolysosome occurred normally. Extensive mutagenesis of TASL demonstrated that its localization and function relies on the interaction with SLC15A4. TASL contains a conserved pLxIS motif (in which p denotes a hydrophilic residue and x denotes any residue) that mediates the recruitment and activation of IRF5. This finding shows that TASL is an innate immune adaptor for TLR7, TLR8 and TLR9 signalling, revealing a clear mechanistic analogy with the IRF3 adaptors STING, MAVS and TRIF10,11. The identification of TASL as the component that links endolysosomal TLRs to the IRF5 transcription factor via SLC15A4 provides a mechanistic explanation for the involvement of these proteins in systemic lupus erythematosus12-14.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Motivos de Aminoácidos , Animais , Feminino , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Transdução de Sinais
2.
Mol Syst Biol ; 19(7): e11267, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259925

RESUMO

While cellular metabolism impacts the DNA damage response, a systematic understanding of the metabolic requirements that are crucial for DNA damage repair has yet to be achieved. Here, we investigate the metabolic enzymes and processes that are essential for the resolution of DNA damage. By integrating functional genomics with chromatin proteomics and metabolomics, we provide a detailed description of the interplay between cellular metabolism and the DNA damage response. Further analysis identified that Peroxiredoxin 1, PRDX1, contributes to the DNA damage repair. During the DNA damage response, PRDX1 translocates to the nucleus where it reduces DNA damage-induced nuclear reactive oxygen species. Moreover, PRDX1 loss lowers aspartate availability, which is required for the DNA damage-induced upregulation of de novo nucleotide synthesis. In the absence of PRDX1, cells accumulate replication stress and DNA damage, leading to proliferation defects that are exacerbated in the presence of etoposide, thus revealing a role for PRDX1 as a DNA damage surveillance factor.


Assuntos
Ácido Aspártico , Peroxirredoxinas , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Dano ao DNA , Estresse Oxidativo/genética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos
3.
Nat Chem Biol ; 16(11): 1199-1207, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32747809

RESUMO

Targeted protein degradation is a new therapeutic modality based on drugs that destabilize proteins by inducing their proximity to E3 ubiquitin ligases. Of particular interest are molecular glues that can degrade otherwise unligandable proteins by orchestrating direct interactions between target and ligase. However, their discovery has so far been serendipitous, thus hampering broad translational efforts. Here, we describe a scalable strategy toward glue degrader discovery that is based on chemical screening in hyponeddylated cells coupled to a multi-omics target deconvolution campaign. This approach led us to identify compounds that induce ubiquitination and degradation of cyclin K by prompting an interaction of CDK12-cyclin K with a CRL4B ligase complex. Notably, this interaction is independent of a dedicated substrate receptor, thus functionally segregating this mechanism from all described degraders. Collectively, our data outline a versatile and broadly applicable strategy to identify degraders with nonobvious mechanisms and thus empower future drug discovery efforts.


Assuntos
Acetamidas/química , Antibacterianos/farmacologia , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Doxiciclina/farmacologia , Hidrazinas/química , Indóis/química , Proteólise/efeitos dos fármacos , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica , Humanos , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
4.
J Hepatol ; 75(5): 1164-1176, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34242699

RESUMO

BACKGROUND & AIMS: 24-Norursodeoxycholic acid (NorUDCA) is a novel therapeutic bile acid used to treat immune-mediated cholestatic liver diseases, such as primary sclerosing cholangitis (PSC), where dysregulated T cells including CD8+ T cells contribute to hepatobiliary immunopathology. We hypothesized that NorUDCA may directly modulate CD8+ T cell function thus contributing to its therapeutic efficacy. METHODS: NorUDCA's immunomodulatory effects were first studied in Mdr2-/- mice, as a cholestatic model of PSC. To differentiate NorUDCA's immunomodulatory effects on CD8+ T cell function from its anticholestatic actions, we also used a non-cholestatic model of hepatic injury induced by an excessive CD8+ T cell immune response upon acute non-cytolytic lymphocytic choriomeningitis virus (LCMV) infection. Studies included molecular and biochemical approaches, flow cytometry and metabolic assays in murine CD8+ T cells in vitro. Mass spectrometry was used to identify potential CD8+ T cell targets modulated by NorUDCA. The signaling effects of NorUDCA observed in murine cells were validated in circulating T cells from patients with PSC. RESULTS: NorUDCA demonstrated immunomodulatory effects by reducing hepatic innate and adaptive immune cells, including CD8+ T cells in the Mdr2-/- model. In the non-cholestatic model of CD8+ T cell-driven immunopathology induced by acute LCMV infection, NorUDCA ameliorated hepatic injury and systemic inflammation. Mechanistically, NorUDCA demonstrated strong immunomodulatory efficacy in CD8+ T cells affecting lymphoblastogenesis, expansion, glycolysis and mTORC1 signaling. Mass spectrometry identified that NorUDCA regulates CD8+ T cells by targeting mTORC1. NorUDCA's impact on mTORC1 signaling was further confirmed in circulating PSC CD8+ T cells. CONCLUSIONS: NorUDCA has a direct modulatory impact on CD8+ T cells and attenuates excessive CD8+ T cell-driven hepatic immunopathology. These findings are relevant for treatment of immune-mediated liver diseases such as PSC. LAY SUMMARY: Elucidating the mechanisms by which 24-norursodeoxycholic acid (NorUDCA) works for the treatment of immune-mediated liver diseases, such as primary sclerosing cholangitis, is of considerable clinical interest. Herein, we uncovered an unrecognized property of NorUDCA in the immunometabolic regulation of CD8+ T cells, which has therapeutic relevance for immune-mediated liver diseases, including PSC.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Ácido Ursodesoxicólico/análogos & derivados , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/fisiopatologia , Fígado/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico
5.
Nat Chem Biol ; 13(7): 771-778, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28530711

RESUMO

Approved drugs are invaluable tools to study biochemical pathways, and further characterization of these compounds may lead to repurposing of single drugs or combinations. Here we describe a collection of 308 small molecules representing the diversity of structures and molecular targets of all FDA-approved chemical entities. The CeMM Library of Unique Drugs (CLOUD) covers prodrugs and active forms at pharmacologically relevant concentrations and is ideally suited for combinatorial studies. We screened pairwise combinations of CLOUD drugs for impairment of cancer cell viability and discovered a synergistic interaction between flutamide and phenprocoumon (PPC). The combination of these drugs modulates the stability of the androgen receptor (AR) and resensitizes AR-mutant prostate cancer cells to flutamide. Mechanistically, we show that the AR is a substrate for γ-carboxylation, a post-translational modification inhibited by PPC. Collectively, our data suggest that PPC could be repurposed to tackle resistance to antiandrogens in prostate cancer patients.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Receptores Androgênicos/metabolismo , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Flutamida/farmacologia , Humanos , Masculino , Estrutura Molecular , Femprocumona/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
6.
Proteomics ; 18(8): e1700386, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29474001

RESUMO

Chromosome-centric Human Proteome Project aims at identifying and characterizing protein products encoded from all human protein-coding genes. As of early 2017, 19 837 protein-coding genes have been annotated in the neXtProt database including 2691 missing proteins that have never been identified by mass spectrometry. Missing proteins may be low abundant in many cell types or expressed only in a few cell types in human body such as sperms in testis. In this study, we performed expression proteomics of two near-haploid cell types such as HAP1 and KBM-7 to hunt for missing proteins. Proteomes from the two haploid cell lines were analyzed on an LTQ Orbitrap Velos, producing a total of 200 raw mass spectrometry files. After applying 1% false discovery rates at both levels of peptide-spectrum matches and proteins, more than 10 000 proteins were identified from HAP1 and KBM-7, resulting in the identification of nine missing proteins. Next, unmatched spectra were searched against protein databases translated in three frames from noncoding RNAs derived from RNA-Seq data, resulting in six novel protein-coding regions after careful manual inspection. This study demonstrates that expression proteomics coupled to proteogenomic analysis can be employed to identify many annotated and unannotated missing proteins.


Assuntos
Haploidia , Proteogenômica/métodos , Proteoma/genética , Transcriptoma , Sequência de Aminoácidos , Linhagem Celular , Humanos , Proteoma/análise , RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Espectrometria de Massas em Tandem/métodos
7.
Nat Methods ; 12(11): 1055-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26389571

RESUMO

Thermal stabilization of proteins after ligand binding provides an efficient means to assess the binding of small molecules to proteins. We show here that in combination with quantitative mass spectrometry, the approach allows for the systematic survey of protein engagement by cellular metabolites and drugs. We profiled the targets of the drugs methotrexate and (S)-crizotinib and the metabolite 2'3'-cGAMP in intact cells and identified the 2'3'-cGAMP cognate transmembrane receptor STING, involved in immune signaling.


Assuntos
Proteoma/metabolismo , Pirazóis/química , Piridinas/química , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Biologia Computacional , Crizotinibe , Desenho de Fármacos , Humanos , Sistema Imunitário , Células K562 , Ligantes , Espectrometria de Massas , Metotrexato/química , Camundongos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Proteômica , Transdução de Sinais , Biologia de Sistemas , Temperatura
9.
Nature ; 487(7408): 486-90, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22810585

RESUMO

Viruses must enter host cells to replicate, assemble and propagate. Because of the restricted size of their genomes, viruses have had to evolve efficient ways of exploiting host cell processes to promote their own life cycles and also to escape host immune defence mechanisms. Many viral open reading frames (viORFs) with immune-modulating functions essential for productive viral growth have been identified across a range of viral classes. However, there has been no comprehensive study to identify the host factors with which these viORFs interact for a global perspective of viral perturbation strategies. Here we show that different viral perturbation patterns of the host molecular defence network can be deduced from a mass-spectrometry-based host-factor survey in a defined human cellular system by using 70 innate immune-modulating viORFs from 30 viral species. The 579 host proteins targeted by the viORFs mapped to an unexpectedly large number of signalling pathways and cellular processes, suggesting yet unknown mechanisms of antiviral immunity. We further experimentally verified the targets heterogeneous nuclear ribonucleoprotein U, phosphatidylinositol-3-OH kinase, the WNK (with-no-lysine) kinase family and USP19 (ubiquitin-specific peptidase 19) as vulnerable nodes in the host cellular defence system. Evaluation of the impact of viral immune modulators on the host molecular network revealed perturbation strategies used by individual viruses and by viral classes. Our data are also valuable for the design of broad and specific antiviral therapies.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Vírus/imunologia , Endopeptidases/metabolismo , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Imunidade Inata/imunologia , Espectrometria de Massas , Fases de Leitura Aberta/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Especificidade por Substrato , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Vírus/metabolismo
10.
Mol Cell Proteomics ; 15(3): 1139-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26933192

RESUMO

Tandem affinity purification-mass spectrometry (TAP-MS) is a popular strategy for the identification of protein-protein interactions, characterization of protein complexes, and entire networks. Its employment in cellular settings best fitting the relevant physiology is limited by convenient expression vector systems. We developed an easy-to-handle, inducible, dually selectable retroviral expression vector allowing dose- and time-dependent control of bait proteins bearing the efficient streptavidin-hemagglutinin (SH)-tag at their N- or C termini. Concomitant expression of a reporter fluorophore allows to monitor bait-expressing cells by flow cytometry or microscopy and enables high-throughput phenotypic assays. We used the system to successfully characterize the interactome of the neuroblastoma RAS viral oncogene homolog (NRAS) Gly12Asp (G12D) mutant and exploited the advantage of reporter fluorophore expression by tracking cytokine-independent cell growth using flow cytometry. Moreover, we tested the feasibility of studying cytotoxicity-mediating proteins with the vector system on the cell death-inducing mixed lineage kinase domain-like protein (MLKL) Ser358Asp (S358D) mutant. Interaction proteomics analysis of MLKL Ser358Asp (S358D) identified heat shock protein 90 (HSP90) as a high-confidence interacting protein. Further phenotypic characterization established MLKL as a novel HSP90 client. In summary, this novel inducible expression system enables SH-tag-based interaction studies in the cell line proficient for the respective phenotypic or signaling context and constitutes a valuable tool for experimental approaches requiring inducible or traceable protein expression.


Assuntos
Cromatografia de Afinidade/métodos , Proteínas de Choque Térmico HSP90/metabolismo , Mutação , Proteínas Quinases/metabolismo , Proteômica/métodos , Retroviridae/genética , Espectrometria de Massas em Tandem/métodos , Animais , Linhagem Celular , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Genes Reporter , Células HEK293 , Células HT29 , Humanos , Células K562 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Quinases/genética
11.
Proc Natl Acad Sci U S A ; 112(10): 3056-61, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713392

RESUMO

Dendritic cells (DCs) are the primary leukocytes responsible for priming T cells. To find and activate naïve T cells, DCs must migrate to lymph nodes, yet the cellular programs responsible for this key step remain unclear. DC migration to lymph nodes and the subsequent T-cell response are disrupted in a mouse we recently described lacking the NOD-like receptor NLRP10 (NLR family, pyrin domain containing 10); however, the mechanism by which this pattern recognition receptor governs DC migration remained unknown. Using a proteomic approach, we discovered that DCs from Nlrp10 knockout mice lack the guanine nucleotide exchange factor DOCK8 (dedicator of cytokinesis 8), which regulates cytoskeleton dynamics in multiple leukocyte populations; in humans, loss-of-function mutations in Dock8 result in severe immunodeficiency. Surprisingly, Nlrp10 knockout mice crossed to other backgrounds had normal DOCK8 expression. This suggested that the original Nlrp10 knockout strain harbored an unexpected mutation in Dock8, which was confirmed using whole-exome sequencing. Consistent with our original report, NLRP3 inflammasome activation remained unaltered in NLRP10-deficient DCs even after restoring DOCK8 function; however, these DCs recovered the ability to migrate. Isolated loss of DOCK8 via targeted deletion confirmed its absolute requirement for DC migration. Because mutations in Dock genes have been discovered in other mouse lines, we analyzed the diversity of Dock8 across different murine strains and found that C3H/HeJ mice also harbor a Dock8 mutation that partially impairs DC migration. We conclude that DOCK8 is an important regulator of DC migration during an immune response and is prone to mutations that disrupt its crucial function.


Assuntos
Proteínas de Transporte/fisiologia , Movimento Celular/genética , Células Dendríticas/imunologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Mutação Puntual
12.
Proteomics ; 16(22): 2911-2920, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27759936

RESUMO

The molecular composition of synaptic signal transduction machineries shapes synaptic neurotransmission. The repertoire of receptors, transporters and channels (RTCs) comprises major signaling events in the brain. RTCs are conventionally studied by candidate immunohistochemistry and biochemistry, which are low throughput with resolution greatly affected by available immunoreagents and membrane interference. Therefore, a comprehensive resource of synaptic brain RTCs is still lacking. In particular, studies on the detergent-soluble synaptosomal fraction, known to contain transporters and channels, are limited. We, therefore, performed sub-synaptosomal fractionation of rat cerebral cortex, followed by trypsin/chymotrypsin sequential digestion of a detergent-soluble synaptosomal fraction and a postsynaptic density preparation, stable-isotope tryptic peptide labeling and liquid chromatography mass spectrometry. Based on the current study, a total of 4784 synaptic proteins were submitted to the ProteomExchange database (PXD001948), including 274 receptors, 394 transporters/channels and 1377 transmembrane proteins. Function-based classification assigned 1781 proteins as probable drug targets with 834 directly linked to brain disorders. The analytical approach identified 499 RTCs that are not listed in the largest, curated database for synaptosomal proteins (SynProt). This is a threefold RTC increase over all other data collected to date. Taken together, we present a protein discovery resource that can serve as a benchmark for future molecular interrogation of synaptic connectivity.


Assuntos
Córtex Cerebral/química , Proteínas de Membrana Transportadoras/análise , Sinaptossomos/química , Animais , Fracionamento Celular , Detergentes/química , Masculino , Proteoma/análise , Proteômica , Ratos , Ratos Wistar , Solubilidade , Espectrometria de Massas em Tandem
13.
J Proteome Res ; 15(2): 647-58, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699813

RESUMO

Plasma membrane (PM) proteins contribute to the identity of a cell, mediate contact and communication, and account for more than two-thirds of known drug targets.1-8 In the past years, several protocols for the proteomic profiling of PM proteins have been described. Nevertheless, comparative analyses have mainly focused on different variations of one approach.9-11 We compared sulfo-NHS-SS-biotinylation, aminooxy-biotinylation, and surface coating with silica beads to isolate PM proteins for subsequent analysis by one-dimensional gel-free liquid chromatography mass spectrometry. Absolute and relative numbers of PM proteins and reproducibility parameters on a qualitative and quantitative level were assessed. Sulfo-NHS-SS-biotinylation outperformed aminooxy-biotinylation and surface coating using silica beads for most of the monitored criteria. We further simplified this procedure by a competitive biotin elution strategy achieving an average PM annotated protein fraction of 54% (347 proteins). Computational analysis using additional databases and prediction tools revealed that in total over 90% of the purified proteins were associated with the PM, mostly as interactors. The modified sulfo-NHS-SS-biotinylation protocol was validated by tracking changes in the plasma membrane proteome composition induced by genetic alteration and drug treatment. Glycosylphosphatidylinositol (GPI)-anchored proteins were depleted in PM purifications from cells deficient in the GPI transamidase component PIGS, and treatment of cells with tunicamycin significantly reduced the abundance of N-glycoproteins in surface purifications.


Assuntos
Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Antibacterianos/farmacologia , Biotinilação , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cromatografia Líquida/métodos , Humanos , Espectrometria de Massas/métodos , Proteínas de Membrana/genética , Proteoma/genética , Reprodutibilidade dos Testes , Tunicamicina/farmacologia
14.
Mol Syst Biol ; 11(1): 789, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25699542

RESUMO

Some mutations in cancer cells can be exploited for therapeutic intervention. However, for many cancer subtypes, including triple-negative breast cancer (TNBC), no frequently recurring aberrations could be identified to make such an approach clinically feasible. Characterized by a highly heterogeneous mutational landscape with few common features, many TNBCs cluster together based on their 'basal-like' transcriptional profiles. We therefore hypothesized that targeting TNBC cells on a systems level by exploiting the transcriptional cell state might be a viable strategy to find novel therapies for this highly aggressive disease. We performed a large-scale chemical genetic screen and identified a group of compounds related to the drug PKC412 (midostaurin). PKC412 induced apoptosis in a subset of TNBC cells enriched for the basal-like subtype and inhibited tumor growth in vivo. We employed a multi-omics approach and computational modeling to address the mechanism of action and identified spleen tyrosine kinase (SYK) as a novel and unexpected target in TNBC. Quantitative phosphoproteomics revealed that SYK inhibition abrogates signaling to STAT3, explaining the selectivity for basal-like breast cancer cells. This non-oncogene addiction suggests that chemical SYK inhibition may be beneficial for a specific subset of TNBC patients and demonstrates that targeting cell states could be a viable strategy to discover novel treatment strategies.


Assuntos
Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Terapia de Alvo Molecular , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Estaurosporina/análogos & derivados , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Simulação de Acoplamento Molecular , Domínios e Motivos de Interação entre Proteínas , Proteômica/métodos , Análise de Sequência de RNA , Transdução de Sinais , Estaurosporina/farmacologia , Quinase Syk , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Chemistry ; 21(28): 10116-22, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26033174

RESUMO

Phosphoanhydrides (P-anhydrides) are ubiquitously occurring modifications in nature. Nucleotides and their conjugates, for example, are among the most important building blocks and signaling molecules in cell biology. To study and manipulate their biological functions, a diverse range of analogues have been developed. Phosphate-modified analogues have been successfully applied to study proteins that depend on these abundant cellular building blocks, but very often both the preparation and purification of these molecules are challenging. This study discloses a general access to P-anhydrides, including different nucleotide probes, that greatly facilitates their preparation and isolation. The convenient and scalable synthesis of, for example, (18) O labeled nucleoside triphosphates holds promise for future applications in phosphoproteomics.


Assuntos
Anidridos/síntese química , Nucleosídeos/química , Nucleotídeos/química , Fosfatos/síntese química , Anidridos/química , Estrutura Molecular , Fosfatos/química
16.
Anal Biochem ; 473: 11-3, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25479603

RESUMO

Sample preparation prior to analysis by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) usually involves the storage of frozen peptide samples in an acidic environment for variable time periods. Questions arose in our laboratory regarding the stability of peptides in acid under medium- to long-term storage. Thus, a 10-month longitudinal study was designed to assess the effect on storage of tryptic peptides at -20 and -80°C under acidic conditions. Our conclusion and proposal from this evaluation is that the optimal storage conditions of peptide samples in acid for proteomic experiments is at -80°C and, ideally, as separate aliquots.


Assuntos
Peptídeos/química , Proteólise , Proteômica , Sequência de Aminoácidos , Métodos Analíticos de Preparação de Amostras , Animais , Bovinos , Temperatura Baixa , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Fatores de Tempo
17.
J Proteome Res ; 13(2): 1147-55, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24400740

RESUMO

Affinity purification coupled to 1-D gel-free liquid chromatography mass spectrometry (LC-MS) is a well-established and widespread approach for the analyses of noncovalently interacting protein complexes. In this study, two proteins conjugated to a streptavidin-binding peptide and hemagglutinin double tag were expressed in the respective Flp-In HEK293 cell lines: green fluorescent protein (SH-GFP) and TANK binding kinase 1 (SH-TBK1_MOUSE). Fluorescent anti-HA immunoblots revealed that the expression level of SH-GFP was ∼50% lower than that of SH-TBK1_MOUSE. Subsequently, the input material was normalized to obtain a similar quantity of purified SH-tagged proteins. Optimization of the release of protein complexes from the anti-HA-agarose with different eluting agents was then assessed. With respect to the total number of protein groups identified in the purified complexes, elution with 2% SDS surpassed both 100 mM glycine and 100 mM formic acid. Relative quantitation of the purified protein complexes using TMT 6-plex reagents confirmed the higher efficiency of the 2% SDS elution followed by filter-aided sample preparation (FASP). The data presented in this study provide a new application of FASP to quantitative MS analysis of affinity-purified protein complexes. We have termed the approach abFASP-MS, or affinity-based filter-aided sample preparation mass spectrometry.


Assuntos
Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Western Blotting , Cromatografia de Afinidade , Cromatografia de Fase Reversa , Eletroforese em Gel de Poliacrilamida , Proteínas/química , Tripsina/química
18.
J Proteome Res ; 13(6): 2830-45, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24803318

RESUMO

Melanoma, the deadliest form of skin cancer, is highly immunogenic and frequently infiltrated with immune cells including B cells. The role of tumor-infiltrating B cells (TIBCs) in melanoma is as yet unresolved, possibly due to technical challenges in obtaining TIBCs in sufficient quantity for extensive studies and due to the limited life span of B cells in vitro. A comprehensive workflow has thus been developed for successful isolation and proteomic analysis of a low number of TIBCs from fresh, human melanoma tissue. In addition, we generated in vitro-proliferating TIBC cultures using simultaneous stimulation with Epstein-Barr virus (EBV) and the TLR9 ligand CpG-oligodesoxynucleotide (CpG ODN). The FASP method and iTRAQ labeling were utilized to obtain a comparative, semiquantitative proteome to assess EBV-induced changes in TIBCs. By using as few as 100 000 B cells (∼5 µg protein)/sample for our proteomic study, a total number of 6507 proteins were identified. EBV-induced changes in TIBCs are similar to those already reported for peripheral B cells and largely involve changes in cell cycle proliferation, apoptosis, and interferon response, while most of the proteins were not significantly altered. This study provides an essential, further step toward detailed characterization of TIBCs including functional in vitro analysis.


Assuntos
Linfócitos B/metabolismo , Herpesvirus Humano 4/fisiologia , Melanoma/imunologia , Proteoma/metabolismo , Linfócitos B/virologia , Proliferação de Células , Separação Celular , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Melanoma/patologia , Melanoma/secundário , Anotação de Sequência Molecular , Proteoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Tumorais Cultivadas
19.
Nat Chem Biol ; 8(11): 905-912, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23023260

RESUMO

Occurrence of the BCR-ABL(T315I) gatekeeper mutation is among the most pressing challenges in the therapy of chronic myeloid leukemia (CML). Several BCR-ABL inhibitors have multiple targets and pleiotropic effects that could be exploited for their synergistic potential. Testing combinations of such kinase inhibitors identified a strong synergy between danusertib and bosutinib that exclusively affected CML cells harboring BCR-ABL(T315I). To elucidate the underlying mechanisms, we applied a systems-level approach comprising phosphoproteomics, transcriptomics and chemical proteomics. Data integration revealed that both compounds targeted Mapk pathways downstream of BCR-ABL, resulting in impaired activity of c-Myc. Using pharmacological validation, we assessed that the relative contributions of danusertib and bosutinib could be mimicked individually by Mapk inhibitors and collectively by downregulation of c-Myc through Brd4 inhibition. Thus, integration of genome- and proteome-wide technologies enabled the elucidation of the mechanism by which a new drug synergy targets the dependency of BCR-ABL(T315I) CML cells on c-Myc through nonobvious off targets.


Assuntos
Compostos de Anilina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Nitrilas/farmacologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Proteômica , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Biologia de Sistemas
20.
Science ; 384(6694): eadk5864, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662832

RESUMO

Chemical modulation of proteins enables a mechanistic understanding of biology and represents the foundation of most therapeutics. However, despite decades of research, 80% of the human proteome lacks functional ligands. Chemical proteomics has advanced fragment-based ligand discovery toward cellular systems, but throughput limitations have stymied the scalable identification of fragment-protein interactions. We report proteome-wide maps of protein-binding propensity for 407 structurally diverse small-molecule fragments. We verified that identified interactions can be advanced to active chemical probes of E3 ubiquitin ligases, transporters, and kinases. Integrating machine learning binary classifiers further enabled interpretable predictions of fragment behavior in cells. The resulting resource of fragment-protein interactions and predictive models will help to elucidate principles of molecular recognition and expedite ligand discovery efforts for hitherto undrugged proteins.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Proteômica , Bibliotecas de Moléculas Pequenas , Humanos , Ligantes , Ligação Proteica , Proteoma/metabolismo , Proteômica/métodos , Bibliotecas de Moléculas Pequenas/química , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA