Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(26): 5040-5058.e19, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563667

RESUMO

Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. VIDEO ABSTRACT.


Assuntos
Doença de Alzheimer , Proteoma , Camundongos , Humanos , Animais , Proteoma/análise , Proteômica/métodos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Espectrometria de Massas , Placa Amiloide
2.
FASEB J ; 38(2): e23442, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38275103

RESUMO

The intramembrane protease γ-secretase has broad physiological functions, but also contributes to Notch-dependent tumors and Alzheimer's disease. While γ-secretase cleaves numerous membrane proteins, only few nonsubstrates are known. Thus, a fundamental open question is how γ-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics, we identified several type I membrane proteins with short ectodomains that were inefficiently or not cleaved by γ-secretase, including 'pituitary tumor-transforming gene 1-interacting protein' (PTTG1IP). To analyze the mechanism preventing cleavage of these putative nonsubstrates, we used the validated substrate FN14 as a backbone and replaced its transmembrane domain (TMD), where γ-cleavage occurs, with the one of nonsubstrates. Surprisingly, some nonsubstrate TMDs were efficiently cleaved in the FN14 backbone, demonstrating that a cleavable TMD is necessary, but not sufficient for cleavage by γ-secretase. Cleavage efficiencies varied by up to 200-fold. Other TMDs, including that of PTTG1IP, were still barely cleaved within the FN14 backbone. Pharmacological and mutational experiments revealed that the PTTG1IP TMD is palmitoylated, which prevented cleavage by γ-secretase. We conclude that the TMD sequence of a membrane protein and its palmitoylation can be key factors determining substrate recognition and cleavage efficiency by γ-secretase.


Assuntos
Secretases da Proteína Precursora do Amiloide , Lipoilação , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Precursor de Proteína beta-Amiloide/metabolismo
3.
Cell Mol Life Sci ; 81(1): 227, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775843

RESUMO

Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.


Assuntos
Autofagia , Catepsinas , Lisossomos , Proteólise , Humanos , Lisossomos/metabolismo , Catepsinas/metabolismo , Catepsinas/genética , Células HeLa , Endocitose , Catepsina L/metabolismo , Catepsina L/genética , Linhagem Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
4.
Cell Mol Life Sci ; 81(1): 163, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570362

RESUMO

Proteolytic release of transmembrane proteins from the cell surface, the so called ectodomain shedding, is a key process in inflammation. Inactive rhomboid 2 (iRhom2) plays a crucial role in this context, in that it guides maturation and function of the sheddase ADAM17 (a disintegrin and metalloproteinase 17) in immune cells, and, ultimately, its ability to release inflammatory mediators such as tumor necrosis factor α (TNFα). Yet, the macrophage sheddome of iRhom2/ADAM17, which is the collection of substrates that are released by the proteolytic complex, is only partly known. In this study, we applied high-resolution proteomics to murine and human iRhom2-deficient macrophages for a systematic identification of substrates, and therefore functions, of the iRhom2/ADAM17 proteolytic complex. We found that iRhom2 loss suppressed the release of a group of transmembrane proteins, including known (e.g. CSF1R) and putative novel ADAM17 substrates. In the latter group, shedding of major histocompatibility complex class I molecules (MHC-I) was consistently reduced in both murine and human macrophages when iRhom2 was ablated. Intriguingly, it emerged that in addition to its shedding, iRhom2 could also control surface expression of MHC-I by an undefined mechanism. We have demonstrated the biological significance of this process by using an in vitro model of CD8+ T-cell (CTL) activation. In this model, iRhom2 loss and consequent reduction of MHC-I expression on the cell surface of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line dampened activation of autologous CTLs and their cell-mediated cytotoxicity. Taken together, this study uncovers a new role for iRhom2 in controlling cell surface levels of MHC-I by a dual mechanism that involves regulation of their surface expression and ectodomain shedding.


Assuntos
Proteínas de Transporte , Infecções por Vírus Epstein-Barr , Animais , Humanos , Camundongos , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Proteínas de Transporte/metabolismo , Herpesvirus Humano 4 , Complexo Principal de Histocompatibilidade , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout
5.
Proc Natl Acad Sci U S A ; 119(24): e2119804119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666874

RESUMO

Single-cell transcriptomics has revealed specific glial activation states associated with the pathogenesis of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. While these findings may eventually lead to new therapeutic opportunities, little is known about how these glial responses are reflected by biomarker changes in bodily fluids. Such knowledge, however, appears crucial for patient stratification, as well as monitoring disease progression and treatment responses in clinical trials. Here, we took advantage of well-described mouse models of ß-amyloidosis and α-synucleinopathy to explore cerebrospinal fluid (CSF) proteome changes related to their respective proteopathic lesions. Nontargeted liquid chromatography-mass spectrometry revealed that the majority of proteins that undergo age-related changes in CSF of either mouse model were linked to microglia and astrocytes. Specifically, we identified a panel of more than 20 glial-derived proteins that were increased in CSF of aged ß-amyloid precursor protein- and α-synuclein-transgenic mice and largely overlap with previously described disease-associated glial genes identified by single-cell transcriptomics. Our results also show that enhanced shedding is responsible for the increase of several of the identified glial CSF proteins as exemplified for TREM2. Notably, the vast majority of these proteins can also be quantified in human CSF and reveal changes in Alzheimer's disease cohorts. The finding that cellular transcriptome changes translate into corresponding changes of CSF proteins is of clinical relevance, supporting efforts to identify fluid biomarkers that reflect the various functional states of glial responses in cerebral proteopathies, such as Alzheimer's and Parkinson's disease.


Assuntos
Doença de Alzheimer , Líquido Cefalorraquidiano , Neuroglia , Doença de Parkinson , Proteoma , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Animais , Biomarcadores/líquido cefalorraquidiano , Líquido Cefalorraquidiano/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Neuroglia/metabolismo , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/metabolismo , Proteoma/metabolismo , Análise de Célula Única , Proteínas tau
6.
J Proteome Res ; 23(1): 117-129, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015820

RESUMO

The foundation for integrating mass spectrometry (MS)-based proteomics into systems medicine is the development of standardized start-to-finish and fit-for-purpose workflows for clinical specimens. An essential step in this pursuit is to highlight the common ground in a diverse landscape of different sample preparation techniques and liquid chromatography-mass spectrometry (LC-MS) setups. With the aim to benchmark and improve the current best practices among the proteomics MS laboratories of the CLINSPECT-M consortium, we performed two consecutive round-robin studies with full freedom to operate in terms of sample preparation and MS measurements. The six study partners were provided with two clinically relevant sample matrices: plasma and cerebrospinal fluid (CSF). In the first round, each laboratory applied their current best practice protocol for the respective matrix. Based on the achieved results and following a transparent exchange of all lab-specific protocols within the consortium, each laboratory could advance their methods before measuring the same samples in the second acquisition round. Both time points are compared with respect to identifications (IDs), data completeness, and precision, as well as reproducibility. As a result, the individual performances of participating study centers were improved in the second measurement, emphasizing the effect and importance of the expert-driven exchange of best practices for direct practical improvements.


Assuntos
Plasma , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Fluxo de Trabalho , Reprodutibilidade dos Testes , Plasma/química
7.
EMBO J ; 39(20): e105693, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32954517

RESUMO

To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the "high-performance secretome protein enrichment with click sugars" (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS-induced neuroinflammation and to establish the cell type-resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins in vitro and in vivo are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer-linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type-specific biomarkers for CNS diseases.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Proteômica/métodos , Software , Proteínas ADAM/líquido cefalorraquidiano , Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Animais , Antígenos CD/líquido cefalorraquidiano , Antígenos CD/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/líquido cefalorraquidiano , Encéfalo/citologia , Células Cultivadas , Proteínas do Líquido Cefalorraquidiano , Cromatografia Líquida , Ontologia Genética , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteínas do Tecido Nervoso/metabolismo , Análise de Componente Principal , Proteoma/metabolismo , Espectrometria de Massas em Tandem
8.
EMBO J ; 39(15): e103457, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32567721

RESUMO

Seizure protein 6 (SEZ6) is required for the development and maintenance of the nervous system, is a major substrate of the protease BACE1 and is linked to Alzheimer's disease (AD) and psychiatric disorders, but its molecular functions are not well understood. Here, we demonstrate that SEZ6 controls glycosylation and cell surface localization of kainate receptors composed of GluK2/3 subunits. Loss of SEZ6 reduced surface levels of GluK2/3 in primary neurons and reduced kainate-evoked currents in CA1 pyramidal neurons in acute hippocampal slices. Mechanistically, loss of SEZ6 in vitro and in vivo prevented modification of GluK2/3 with the human natural killer-1 (HNK-1) glycan, a modulator of GluK2/3 function. SEZ6 interacted with GluK2 through its ectodomain and promoted post-endoplasmic reticulum transport of GluK2 in the secretory pathway in heterologous cells and primary neurons. Taken together, SEZ6 acts as a new trafficking factor for GluK2/3. This novel function may help to better understand the role of SEZ6 in neurologic and psychiatric diseases.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , Receptores de Ácido Caínico/metabolismo , Animais , Glicosilação , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Receptores de Ácido Caínico/genética , Receptor de GluK2 Cainato , Receptor de GluK3 Cainato
9.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339197

RESUMO

Alterations in the gut microbiome are associated with the pathogenesis of Alzheimer's disease (AD) and can be used as a diagnostic measure. However, longitudinal data of the gut microbiome and knowledge about its prognostic significance for the development and progression of AD are limited. The aim of the present study was to develop a reliable predictive model based on gut microbiome data for AD development. In this longitudinal study, we investigated the intestinal microbiome in 49 mild cognitive impairment (MCI) patients over a mean (SD) follow-up of 3.7 (0.6) years, using shotgun metagenomics. At the end of the 4-year follow-up (4yFU), 27 MCI patients converted to AD dementia and 22 MCI patients remained stable. The best taxonomic model for the discrimination of AD dementia converters from stable MCI patients included 24 genera, yielding an area under the receiver operating characteristic curve (AUROC) of 0.87 at BL, 0.92 at 1yFU and 0.95 at 4yFU. The best models with functional data were obtained via analyzing 25 GO (Gene Ontology) features with an AUROC of 0.87 at BL, 0.85 at 1yFU and 0.81 at 4yFU and 33 KO [Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog] features with an AUROC of 0.79 at BL, 0.88 at 1yFU and 0.82 at 4yFU. Using ensemble learning for these three models, including a clinical model with the four parameters of age, gender, body mass index (BMI) and Apolipoprotein E (ApoE) genotype, yielded an AUROC of 0.96 at BL, 0.96 at 1yFU and 0.97 at 4yFU. In conclusion, we identified novel and timely stable gut microbiome algorithms that accurately predict progression to AD dementia in individuals with MCI over a 4yFU period.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Humanos , Doença de Alzheimer/genética , Microbioma Gastrointestinal/genética , Estudos Longitudinais , Prognóstico , Disfunção Cognitiva/etiologia , Progressão da Doença , Biomarcadores
10.
FASEB J ; 35(11): e21962, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34613632

RESUMO

Proteolytic ectodomain shedding of membrane proteins is a fundamental mechanism to control the communication between cells and their environment. A key protease for membrane protein shedding is ADAM17, which requires a non-proteolytic subunit, either inactive Rhomboid 1 (iRhom1) or iRhom2 for its activity. While iRhom1 and iRhom2 are co-expressed in most tissues and appear to have largely redundant functions, the brain is an organ with predominant expression of iRhom1. Yet, little is known about the spatio-temporal expression of iRhom1 in mammalian brain and about its function in controlling membrane protein shedding in the nervous system. Here, we demonstrate that iRhom1 is expressed in mouse brain from the prenatal stage to adulthood with a peak in early postnatal development. In the adult mouse brain iRhom1 was widely expressed, including in cortex, hippocampus, olfactory bulb, and cerebellum. Proteomic analysis of the secretome of primary neurons using the hiSPECS method and of cerebrospinal fluid, obtained from iRhom1-deficient and control mice, identified several membrane proteins that require iRhom1 for their shedding in vitro or in vivo. One of these proteins was 'multiple-EGF-like-domains protein 10' (MEGF10), a phagocytic receptor in the brain that is linked to the removal of amyloid ß and apoptotic neurons. MEGF10 was further validated as an ADAM17 substrate using ADAM17-deficient mouse embryonic fibroblasts. Taken together, this study discovers a role for iRhom1 in controlling membrane protein shedding in the mouse brain, establishes MEGF10 as an iRhom1-dependent ADAM17 substrate and demonstrates that iRhom1 is widely expressed in murine brain.


Assuntos
Proteína ADAM17/metabolismo , Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas
11.
J Am Soc Nephrol ; 32(6): 1389-1408, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33785583

RESUMO

BACKGROUND: Podocytes embrace the glomerular capillaries with foot processes, which are interconnected by a specialized adherens junction to ultimately form the filtration barrier. Altered adhesion and loss are common features of podocyte injury, which could be mediated by shedding of cell-adhesion molecules through the regulated activity of cell surface-expressed proteases. A Disintegrin and Metalloproteinase 10 (ADAM10) is such a protease known to mediate ectodomain shedding of adhesion molecules, among others. Here we evaluate the involvement of ADAM10 in the process of antibody-induced podocyte injury. METHODS: Membrane proteomics, immunoblotting, high-resolution microscopy, and immunogold electron microscopy were used to analyze human and murine podocyte ADAM10 expression in health and kidney injury. The functionality of ADAM10 ectodomain shedding for podocyte development and injury was analyzed, in vitro and in vivo, in the anti-podocyte nephritis (APN) model in podocyte-specific, ADAM10-deficient mice. RESULTS: ADAM10 is selectively localized at foot processes of murine podocytes and its expression is dispensable for podocyte development. Podocyte ADAM10 expression is induced in the setting of antibody-mediated injury in humans and mice. Podocyte ADAM10 deficiency attenuates the clinical course of APN and preserves the morphologic integrity of podocytes, despite subepithelial immune-deposit formation. Functionally, ADAM10-related ectodomain shedding results in cleavage of the cell-adhesion proteins N- and P-cadherin, thus decreasing their injury-related surface levels. This favors podocyte loss and the activation of downstream signaling events through the Wnt signaling pathway in an ADAM10-dependent manner. CONCLUSIONS: ADAM10-mediated ectodomain shedding of injury-related cadherins drives podocyte injury.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Nefrite/metabolismo , Síndrome Nefrótica/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Insuficiência Renal Crônica/metabolismo , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Animais , Autoanticorpos/efeitos adversos , Nitrogênio da Ureia Sanguínea , Caderinas/metabolismo , Adesão Celular , Comunicação Celular , Membrana Celular/metabolismo , Células Cultivadas , Creatinina/urina , Modelos Animais de Doenças , Feminino , Barreira de Filtração Glomerular/patologia , Barreira de Filtração Glomerular/fisiopatologia , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite/patologia , Síndrome Nefrótica/patologia , Podócitos/fisiologia , Proteômica , Análise Serial de Tecidos , Transcriptoma , Via de Sinalização Wnt
12.
Proteomics ; 21(1): e2000174, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32951307

RESUMO

Neuronal cell lines are important model systems to study mechanisms of neurodegenerative diseases. One example is the Lund Human Mesencephalic (LUHMES) cell line, which can differentiate into dopaminergic-like neurons and is frequently used to study mechanisms of Parkinson's disease and neurotoxicity. Neuronal differentiation of LUHMES cells is commonly verified with selected neuronal markers, but little is known about the proteome-wide protein abundance changes during differentiation. Using mass spectrometry and label-free quantification (LFQ), the proteome of differentiated and undifferentiated LUHMES cells and of primary murine midbrain neurons are compared. Neuronal differentiation induced substantial changes of the LUHMES cell proteome, with proliferation-related proteins being strongly down-regulated and neuronal and dopaminergic proteins, such as L1CAM and α-synuclein (SNCA) being up to 1,000-fold up-regulated. Several of these proteins, including MAPT and SYN1, may be useful as new markers for experimentally validating neuronal differentiation of LUHMES cells. Primary midbrain neurons are slightly more closely related to differentiated than to undifferentiated LUHMES cells, in particular with respect to the abundance of proteins related to neurodegeneration. In summary, the analysis demonstrates that differentiated LUHMES cells are a suitable model for studies on neurodegeneration and provides a resource of the proteome-wide changes during neuronal differentiation. (ProteomeXchange identifier PXD020044).


Assuntos
Mesencéfalo , Proteoma , Animais , Diferenciação Celular , Humanos , Camundongos , Neurônios , alfa-Sinucleína
13.
J Biol Chem ; 295(36): 12822-12839, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32111735

RESUMO

A disintegrin and metalloprotease 10 (ADAM10) is a transmembrane protein essential for embryonic development, and its dysregulation underlies disorders such as cancer, Alzheimer's disease, and inflammation. ADAM10 is a "molecular scissor" that proteolytically cleaves the extracellular region from >100 substrates, including Notch, amyloid precursor protein, cadherins, growth factors, and chemokines. ADAM10 has been recently proposed to function as six distinct scissors with different substrates, depending on its association with one of six regulatory tetraspanins, termed TspanC8s. However, it remains unclear to what degree ADAM10 function critically depends on a TspanC8 partner, and a lack of monoclonal antibodies specific for most TspanC8s has hindered investigation of this question. To address this knowledge gap, here we designed an immunogen to generate the first monoclonal antibodies targeting Tspan15, a model TspanC8. The immunogen was created in an ADAM10-knockout mouse cell line stably overexpressing human Tspan15, because we hypothesized that expression in this cell line would expose epitopes that are normally blocked by ADAM10. Following immunization of mice, this immunogen strategy generated four Tspan15 antibodies. Using these antibodies, we show that endogenous Tspan15 and ADAM10 co-localize on the cell surface, that ADAM10 is the principal Tspan15-interacting protein, that endogenous Tspan15 expression requires ADAM10 in cell lines and primary cells, and that a synthetic ADAM10/Tspan15 fusion protein is a functional scissor. Furthermore, two of the four antibodies impaired ADAM10/Tspan15 activity. These findings suggest that Tspan15 directly interacts with ADAM10 in a functional scissor complex.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Tetraspaninas/metabolismo , Células A549 , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Animais , Células HEK293 , Humanos , Células Jurkat , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Tetraspaninas/genética
14.
FASEB J ; 34(2): 2465-2482, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908000

RESUMO

The protease beta-site APP cleaving enzyme 1 (BACE1) has fundamental functions in the nervous system. Its inhibition is a major therapeutic approach in Alzheimer's disease, because BACE1 cleaves the amyloid precursor protein (APP), thereby catalyzing the first step in the generation of the pathogenic amyloid beta (Aß) peptide. Yet, BACE1 cleaves numerous additional membrane proteins besides APP. Most of these substrates have been identified in vitro, but only few were further validated or characterized in vivo. To identify BACE1 substrates with in vivo relevance, we used isotope label-based quantitative proteomics of wild type and BACE1-deficient (BACE1 KO) mouse brains. This approach identified known BACE1 substrates, including Close homolog of L1 and contactin-2, which were found to be enriched in the membrane fraction of BACE1 KO brains. VWFA and cache domain-containing protein 1 (CACHD)1 and MAM domain-containing glycosylphosphatidylinositol anchor protein 1 (MDGA1), which have functions in synaptic transmission, were identified and validated as new BACE1 substrates in vivo by immunoblots using primary neurons and mouse brains. Inhibition or deletion of BACE1 from primary neurons resulted in a pronounced inhibition of substrate cleavage and a concomitant increase in full-length protein levels of CACHD1 and MDGA1. The BACE1 cleavage site in both proteins was determined to be located within the juxtamembrane domain. In summary, this study identifies and validates CACHD1 and MDGA1 as novel in vivo substrates for BACE1, suggesting that cleavage of both proteins may contribute to the numerous functions of BACE1 in the nervous system.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteômica , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Encéfalo/patologia , Camundongos , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética
15.
EMBO Rep ; 20(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30733281

RESUMO

Members of the GxGD-type intramembrane aspartyl proteases have emerged as key players not only in fundamental cellular processes such as B-cell development or protein glycosylation, but also in development of pathologies, such as Alzheimer's disease or hepatitis virus infections. However, one member of this protease family, signal peptide peptidase-like 2c (SPPL2c), remains orphan and its capability of proteolysis as well as its physiological function is still enigmatic. Here, we demonstrate that SPPL2c is catalytically active and identify a variety of SPPL2c candidate substrates using proteomics. The majority of the SPPL2c candidate substrates cluster to the biological process of vesicular trafficking. Analysis of selected SNARE proteins reveals proteolytic processing by SPPL2c that impairs vesicular transport and causes retention of cargo proteins in the endoplasmic reticulum. As a consequence, the integrity of subcellular compartments, in particular the Golgi, is disturbed. Together with a strikingly high physiological SPPL2c expression in testis, our data suggest involvement of SPPL2c in acrosome formation during spermatogenesis.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas SNARE/metabolismo , Acrossomo/metabolismo , Animais , Biocatálise , Regulação para Baixo , Glicômica , Glicoproteínas/metabolismo , Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transporte Proteico , Proteólise , Espermátides/metabolismo , Frações Subcelulares/metabolismo , Especificidade por Substrato
16.
EMBO Rep ; 20(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30733280

RESUMO

Signal peptide peptidase (SPP) and the four homologous SPP-like (SPPL) proteases constitute a family of intramembrane aspartyl proteases with selectivity for type II-oriented transmembrane segments. Here, we analyse the physiological function of the orphan protease SPPL2c, previously considered to represent a non-expressed pseudogene. We demonstrate proteolytic activity of SPPL2c towards selected tail-anchored proteins. Despite shared ER localisation, SPPL2c and SPP exhibit distinct, though partially overlapping substrate spectra and inhibitory profiles, and are organised in different high molecular weight complexes. Interestingly, SPPL2c is specifically expressed in murine and human testis where it is primarily localised in spermatids. In mice, SPPL2c deficiency leads to a partial loss of elongated spermatids and reduced motility of mature spermatozoa, but preserved fertility. However, matings of male and female SPPL2c-/- mice exhibit reduced litter sizes. Using proteomics we identify the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2)-regulating protein phospholamban (PLN) as a physiological SPPL2c substrate. Accumulation of PLN correlates with a decrease in intracellular Ca2+ levels in elongated spermatids that likely contribute to the compromised male germ cell differentiation and function of SPPL2c-/- mice.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/enzimologia , Células Germinativas/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico Endopeptidases/química , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Células HeLa , Homeostase , Humanos , Masculino , Proteínas de Membrana/química , Camundongos , Especificidade de Órgãos , Espermátides/metabolismo , Especificidade por Substrato , Testículo/enzimologia
17.
J Public Econ ; 194: 104322, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35702336

RESUMO

We analyze in a survey study whether economic preferences and pre-crisis social responsibility predict social compliance to the policy regulations. Results show that economic preferences are closely related to compliance with policies fighting the crisis. Risk tolerance negatively affects citizens' avoidance of crowds, whereas patience helps to do so and to stay home. Present-biased subjects engage in panic buying. Risk tolerance is negatively related with the fear of COVID-19 and trust positively resonates with positive media perception. Pre-crisis social responsible behavior related to fare evasion, turnout, support of vaccination is also positively related with social compliance. Our findings offer insights, which may help policy-makers and organizations to identify risk groups and regions for the allocation of scarce medical or surveillance resources, such as vaccines, masks, and law enforcement.

18.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673623

RESUMO

Ectodomain shedding is a key mechanism of several biological processes, including cell-communication. Disintegrin and metalloproteinases (ADAMs), together with the membrane-type matrix metalloproteinases, play a pivotal role in shedding transmembrane proteins. Aberrant shedding is associated to several pathological conditions, including arthritis. Tissue inhibitor of metalloproteases 3 (TIMP-3), an endogenous inhibitor of ADAMs and matrix metalloproteases (MMPs), has been proven to be beneficial in such diseases. Thus, strategies to increase TIMP-3 bioavailability in the tissue have been sought for development of therapeutics. Nevertheless, high levels of TIMP-3 may lead to mechanism-based side-effects, as its overall effects on cell behavior are still unknown. In this study, we used a high-resolution mass-spectrometry-based workflow to analyze alterations induced by sustained expression of TIMP-3 in the cell surfaceome. In agreement with its multifunctional properties, TIMP-3 induced changes on the protein composition of the cell surface. We found that TIMP-3 had differential effects on metalloproteinase substrates, with several that accumulated in TIMP-3-overexpressing cells. In addition, our study identified potentially novel ADAM substrates, including ADAM15, whose levels at the cell surface are regulated by the inhibitor. In conclusion, our study reveals that high levels of TIMP-3 induce modifications in the cell surfaceome and identifies molecular pathways that can be deregulated via TIMP-3-based therapies.


Assuntos
Proteínas ADAM/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteoma/análise , Proteoma/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Células HEK293 , Humanos , Espectrometria de Massas , Proteômica
19.
J Dtsch Dermatol Ges ; 19(8): 1145-1157, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34390159

RESUMO

Nodal inclusions of ectopic tissue within lymph nodes are seen comparatively often in dermatopathology and general pathology. Glandular and nonglandular epithelium, as well as melanocytic nevi can be observed within lymph nodes and represent mostly incidental findings without any relevance. The main challenge in reporting these morphologic features is to differentiate such benign inclusions from metastatic settlements of distinct organ tumors. As sentinel node biopsy and lymph node dissection have become standard procedure in clinical oncology and have an immense clinical impact, the correct evaluation of these nodal inclusions is indispensable to avoid undertreatment or overtreatment of patients. In addition, the genesis of these inclusions has not yet been satisfactorily clarified. Two concepts have been laid out: the theory of benign metastases and the migration arrest theory. However, neither theory has so far been able to answer the following questions: Why do we find more nodal nevi in patients with melanoma who had a sentinel node biopsy than in patients without melanoma, and why do we not find nodal nevi in deep visceral lymph nodes? We present a comprehensive review of the current knowledge on nodal inclusions, proposing a concept for the pathogenesis of nodal nevi, to answer these questions.


Assuntos
Nevo Pigmentado , Nevo , Neoplasias Cutâneas , Biomarcadores Tumorais/análise , Humanos , Linfonodos , Metástase Linfática , Nevo Pigmentado/cirurgia , Biópsia de Linfonodo Sentinela
20.
Mol Cell Proteomics ; 17(8): 1487-1501, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29716987

RESUMO

The cell surface proteome is dynamic and has fundamental roles in cell signaling. Many surface membrane proteins are proteolytically released into a cell's secretome, where they can have additional functions in cell-cell-communication. Yet, it remains challenging to determine the surface proteome and to compare it to the cell secretome, under serum-containing cell culture conditions. Here, we set up and evaluated the 'surface-spanning protein enrichment with click sugars' (SUSPECS) method for cell surface membrane glycoprotein biotinylation, enrichment and label-free quantitative mass spectrometry. SUSPECS is based on click chemistry-mediated labeling of glycoproteins, is compatible with labeling of living cells and can be combined with secretome analyses in the same experiment. Immunofluorescence-based confocal microscopy demonstrated that SUSPECS selectively labeled cell surface proteins. Nearly 700 transmembrane glycoproteins were consistently identified at the surface of primary neurons. To demonstrate the utility of SUSPECS, we applied it to the protease BACE1, which is a key drug target in Alzheimer's disease. Pharmacological BACE1-inhibition selectively remodeled the neuronal surface glycoproteome, resulting in up to 7-fold increased abundance of the BACE1 substrates APP, APLP1, SEZ6, SEZ6L, CNTN2, and CHL1, whereas other substrates were not or only mildly affected. Interestingly, protein changes at the cell surface only partly correlated with changes in the secretome. Several altered proteins were validated by immunoblots in neurons and mouse brains. Apparent nonsubstrates, such as TSPAN6, were also increased, indicating that BACE1-inhibition may lead to unexpected secondary effects. In summary, SUSPECS is broadly useful for determination of the surface glycoproteome and its correlation with the secretome.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Membrana Celular/metabolismo , Química Click/métodos , Glicoproteínas/metabolismo , Neurônios/metabolismo , Proteoma/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Biotinilação , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA