Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Methods ; 21(6): 1122-1130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831210

RESUMO

Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys. Here, we present a detailed magnetic resonance imaging resource to study structural WM connectivity in the chimpanzee. This open-access resource contains (1) WM reconstructions of a postmortem chimpanzee brain, using the highest-quality diffusion magnetic resonance imaging data yet acquired from great apes; (2) an optimized and validated method for high-quality fiber orientation reconstructions; and (3) major fiber tract segmentations for cross-species morphological comparisons. This dataset enabled us to identify phylogenetically relevant details of the chimpanzee connectome, and we anticipate that it will substantially contribute to understanding human brain evolution.


Assuntos
Encéfalo , Conectoma , Pan troglodytes , Substância Branca , Pan troglodytes/anatomia & histologia , Animais , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Conectoma/métodos , Masculino , Vias Neurais/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Feminino , Mapeamento Encefálico/métodos
2.
Neuroimage ; 244: 118559, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562697

RESUMO

The human lateral geniculate nucleus (LGN) of the visual thalamus is a key subcortical processing site for visual information analysis. Due to its small size and deep location within the brain, a non-invasive characterization of the LGN and its microstructurally distinct magnocellular (M) and parvocellular (P) subdivisions in humans is challenging. Here, we investigated whether structural quantitative MRI (qMRI) methods that are sensitive to underlying microstructural tissue features enable MR-based mapping of human LGN M and P subdivisions. We employed high-resolution 7 Tesla in-vivo qMRI in N = 27 participants and ultra-high resolution 7 Tesla qMRI of a post-mortem human LGN specimen. We found that a quantitative assessment of the LGN and its subdivisions is possible based on microstructure-informed qMRI contrast alone. In both the in-vivo and post-mortem qMRI data, we identified two components of shorter and longer longitudinal relaxation time (T1) within the LGN that coincided with the known anatomical locations of a dorsal P and a ventral M subdivision, respectively. Through ground-truth histological validation, we further showed that the microstructural MRI contrast within the LGN pertains to cyto- and myeloarchitectonic tissue differences between its subdivisions. These differences were based on cell and myelin density, but not on iron content. Our qMRI-based mapping strategy paves the way for an in-depth understanding of LGN function and microstructure in humans. It further enables investigations into the selective contributions of LGN subdivisions to human behavior in health and disease.


Assuntos
Corpos Geniculados/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Corpos Geniculados/citologia , Humanos , Masculino , Adulto Jovem
3.
Curr Biol ; 27(23): 3692-3698.e4, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29153326

RESUMO

Developmental dyslexia is a highly prevalent reading disorder affecting about 5%-10% of children [1]. It is characterized by slow and/or inaccurate word recognition skills as well as by poor spelling and decoding abilities [2]. Partly due to technical challenges with investigating subcortical sensory structures, current research on dyslexia in humans by and large focuses on the cerebral cortex [3-7]. These studies found that dyslexia is typically associated with functional and structural alterations of a distributed left-hemispheric cerebral cortex network (e.g., [8, 9]). However, findings from animal models and post mortem studies in humans suggest that dyslexia might also be associated with structural alterations in subcortical sensory pathways [10-14] (reviewed in [7]). Whether these alterations also exist in dyslexia in vivo and how they relate to dyslexia symptoms is currently unknown. Here, we used ultra-high-resolution structural magnetic resonance imaging (MRI), diffusion MRI, and probabilistic tractography to investigate the structural connections of the visual sensory pathway in dyslexia in vivo. We discovered that individuals with dyslexia have reduced structural connections in the direct pathway between the left visual thalamus (lateral geniculate nucleus [LGN]) and left middle temporal area V5/MT, but not between the left LGN and left primary visual cortex. In addition, left V5/MT-LGN connectivity strength correlated with rapid naming abilities-a key deficit in dyslexia [15]. These findings provide the first evidence of specific structural alterations in the connections between the sensory thalamus and cortex in developmental dyslexia. The results challenge current standard models and provide novel evidence for the importance of cortico-thalamic interactions in explaining dyslexia.


Assuntos
Dislexia/fisiopatologia , Tálamo/fisiopatologia , Córtex Visual/fisiopatologia , Vias Visuais/fisiopatologia , Adulto , Córtex Cerebral/fisiopatologia , Imagem de Difusão por Ressonância Magnética , Feminino , Corpos Geniculados/fisiopatologia , Alemanha , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
4.
Front Hum Neurosci ; 11: 139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337136

RESUMO

[This corrects the article on p. 445 in vol. 8, PMID: 24994979.].

5.
Brain Struct Funct ; 220(3): 1695-703, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24663802

RESUMO

In this paper, we describe a novel processing strategy for the spatial normalization of ultrahigh resolution magnetic resonance imaging (MRI) data of small ex vivo samples into MNI standard space. We present a multistage scanning and registration method for data of the subthalamic nucleus (STN) obtained using ultrahigh 7 T MRI on four human postmortem brain samples. Four whole brains were obtained and subjected to multistage MRI scanning, corresponding to four different brain dissection stages. Data sets were acquired with an isotropic resolution of 100 µm enabling accurate manual segmentation of the STN. Spatial normalization to MNI reference space was performed, probability maps were calculated, and results were cross-checked with an independent in vivo dataset showing significant overlay. Normalization of results obtained from small tissue samples into MNI standard space will facilitate comparison between individual subjects, as well as between studies. When combining ultrahigh resolution MRI of ex vivo samples with histological studies via blockface imaging, our method enables further insight and inference as multimodal data can be compared within the same reference space. This novel technique may be of value for research purposes using functional MRI techniques, and in the future may be of assistance for anatomical orientation in clinical practice.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Núcleo Subtalâmico/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia/métodos , Encéfalo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/instrumentação , Fatores de Tempo
6.
Front Hum Neurosci ; 8: 445, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24994979

RESUMO

In the recent perceptual decision-making literature, a fronto-parietal network is typically reported to primarily represent the neural substrate of human perceptual decision-making. However, the view that only cortical areas are involved in perceptual decision-making has been challenged by several neurocomputational models which all argue that the basal ganglia play an essential role in perceptual decisions. To consolidate these different views, we conducted an Activation Likelihood Estimation (ALE) meta-analysis on the existing neuroimaging literature. The results argue in favor of the involvement of a frontal-parietal network in general perceptual decision-making that is possibly complemented by the basal ganglia, and modulated in substantial parts by task difficulty. In contrast, expectation of reward, an important aspect of many decision-making processes, shows almost no overlap with the general perceptual decision-making network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA