Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Crit Care Med ; 45(4): 630-636, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28291092

RESUMO

OBJECTIVES: To develop and validate a noninvasive mobility sensor to automatically and continuously detect and measure patient mobility in the ICU. DESIGN: Prospective, observational study. SETTING: Surgical ICU at an academic hospital. PATIENTS: Three hundred sixty-two hours of sensor color and depth image data were recorded and curated into 109 segments, each containing 1,000 images, from eight patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Three Microsoft Kinect sensors (Microsoft, Beijing, China) were deployed in one ICU room to collect continuous patient mobility data. We developed software that automatically analyzes the sensor data to measure mobility and assign the highest level within a time period. To characterize the highest mobility level, a validated 11-point mobility scale was collapsed into four categories: nothing in bed, in-bed activity, out-of-bed activity, and walking. Of the 109 sensor segments, the noninvasive mobility sensor was developed using 26 of these from three ICU patients and validated on 83 remaining segments from five different patients. Three physicians annotated each segment for the highest mobility level. The weighted Kappa (κ) statistic for agreement between automated noninvasive mobility sensor output versus manual physician annotation was 0.86 (95% CI, 0.72-1.00). Disagreement primarily occurred in the "nothing in bed" versus "in-bed activity" categories because "the sensor assessed movement continuously," which was significantly more sensitive to motion than physician annotations using a discrete manual scale. CONCLUSIONS: Noninvasive mobility sensor is a novel and feasible method for automating evaluation of ICU patient mobility.


Assuntos
Unidades de Terapia Intensiva , Monitorização Fisiológica/métodos , Movimento , Idoso , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/instrumentação , Estudos Prospectivos , Gravação em Vídeo/instrumentação , Caminhada
2.
IEEE Trans Med Imaging ; 41(5): 1138-1149, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34871168

RESUMO

Automatic liver tumor segmentation is of great importance for assisting doctors in liver cancer diagnosis and treatment planning. Recently, deep learning approaches trained with pixel-level annotations have contributed many breakthroughs in image segmentation. However, acquiring such accurate dense annotations is time-consuming and labor-intensive, which limits the performance of deep neural networks for medical image segmentation. We note that Couinaud segment is widely used by radiologists when recording liver cancer-related findings in the reports, since it is well-suited for describing the localization of tumors. In this paper, we propose a novel approach to train convolutional networks for liver tumor segmentation using Couinaud segment annotations. Couinaud segment annotations are image-level labels with values ranging from 1 to 8, indicating a specific region of the liver. Our proposed model, namely CouinaudNet, can estimate pseudo tumor masks from the Couinaud segment annotations as pixel-wise supervision for training a fully supervised tumor segmentation model, and it is composed of two components: 1) an inpainting network with Couinaud segment masks which can effectively remove tumors for pathological images by filling the tumor regions with plausible healthy-looking intensities; 2) a difference spotting network for segmenting the tumors, which is trained with healthy-pathological pairs generated by an effective tumor synthesis strategy. The proposed method is extensively evaluated on two liver tumor segmentation datasets. The experimental results demonstrate that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods while requiring significantly less annotation effort.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado
3.
IEEE Trans Med Imaging ; 41(9): 2510-2520, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35404812

RESUMO

Automatic liver tumor segmentation could offer assistance to radiologists in liver tumor diagnosis, and its performance has been significantly improved by recent deep learning based methods. These methods rely on large-scale well-annotated training datasets, but collecting such datasets is time-consuming and labor-intensive, which could hinder their performance in practical situations. Learning from synthetic data is an encouraging solution to address this problem. In our task, synthetic tumors can be injected to healthy images to form training pairs. However, directly applying the model trained using the synthetic tumor images on real test images performs poorly due to the domain shift problem. In this paper, we propose a novel approach, namely Synthetic-to-Real Test-Time Training (SR-TTT), to reduce the domain gap between synthetic training images and real test images. Specifically, we add a self-supervised auxiliary task, i.e., two-step reconstruction, which takes the output of the main segmentation task as its input to build an explicit connection between these two tasks. Moreover, we design a scheduled mixture strategy to avoid error accumulation and bias explosion in the training process. During test time, we adapt the segmentation model to each test image with self-supervision from the auxiliary task so as to improve the inference performance. The proposed method is extensively evaluated on two public datasets for liver tumor segmentation. The experimental results demonstrate that our proposed SR-TTT can effectively mitigate the synthetic-to-real domain shift problem in the liver tumor segmentation task, and is superior to existing state-of-the-art approaches.


Assuntos
Neoplasias Hepáticas , Redes Neurais de Computação , Abdome , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
4.
Artif Intell Med ; 107: 101883, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32828441

RESUMO

Regular medical records are useful for medical practitioners to analyze and monitor patient's health status especially for those with chronic disease. However, such records are usually incomplete due to unpunctuality and absence of patients. In order to resolve the missing data problem over time, tensor-based models have been developed for missing data imputation in recent papers. This approach makes use of the low-rank tensor assumption for highly correlated data in a short-time interval. Nevertheless, when the time intervals are long, data correlation may not be high between consecutive time stamps so that such assumption is not valid. To address this problem, we propose to decompose matrices with missing data over time into their latent factors. Then, the locally linear constraint is imposed on the latent factors for temporal matrix completion. By using three publicly available medical datasets and two medical datasets collected from Prince of Wales Hospital in Hong Kong, experimental results show that the proposed algorithm achieves the best performance compared with state-of-the-art methods.


Assuntos
Algoritmos , Humanos
5.
Artigo em Inglês | MEDLINE | ID: mdl-30640612

RESUMO

Cross-camera label estimation from a set of unlabelled training data is an extremely important component in unsupervised person re-identification (re-ID) systems. With the estimated labels, existing advanced supervised learning methods can be leveraged to learn discriminative re-ID models. In this paper, we utilize the graph matching technique for accurate label estimation due to its advantages in optimal global matching and intra-camera relationship mining. However, the graph structure constructed with non-learnt similarity measurement cannot handle the large cross-camera variations, which leads to noisy and inaccurate label outputs. This paper designs a Dynamic Graph Matching (DGM) framework, which improves the label estimation process by iteratively refining the graph structure with better similarity measurement learnt from intermediate estimated labels. In addition, we design a positive re-weighting strategy to refine the intermediate labels, which enhances the robustness against inaccurate matching output and noisy initial training data. To fully utilize the abundant video information and reduce false matchings, a co-matching strategy is further incorporated into the framework. Comprehensive experiments conducted on three video benchmarks demonstrate that DGM outperforms state-of-the-art unsupervised re-ID methods and yields competitive performance to fully supervised upper bounds.

6.
IEEE Trans Image Process ; 24(5): 1599-613, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25622315

RESUMO

This paper addresses a new person reidentification problem without label information of persons under nonoverlapping target cameras. Given the matched (positive) and unmatched (negative) image pairs from source domain cameras, as well as unmatched (negative) and unlabeled image pairs from target domain cameras, we propose an adaptive ranking support vector machines (AdaRSVMs) method for reidentification under target domain cameras without person labels. To overcome the problems introduced due to the absence of matched (positive) image pairs in the target domain, we relax the discriminative constraint to a necessary condition only relying on the positive mean in the target domain. To estimate the target positive mean, we make use of all the available data from source and target domains as well as constraints in person reidentification. Inspired by adaptive learning methods, a new discriminative model with high confidence in target positive mean and low confidence in target negative image pairs is developed by refining the distance model learnt from the source domain. Experimental results show that the proposed AdaRSVM outperforms existing supervised or unsupervised, learning or non-learning reidentification methods without using label information in target cameras. Moreover, our method achieves better reidentification performance than existing domain adaptation methods derived under equal conditional probability assumption.


Assuntos
Algoritmos , Identificação Biométrica/métodos , Biometria/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fotografação/métodos , Técnica de Subtração , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
IEEE Trans Image Process ; 24(12): 5826-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26415172

RESUMO

Visual tracking using multiple features has been proved as a robust approach because features could complement each other. Since different types of variations such as illumination, occlusion, and pose may occur in a video sequence, especially long sequence videos, how to properly select and fuse appropriate features has become one of the key problems in this approach. To address this issue, this paper proposes a new joint sparse representation model for robust feature-level fusion. The proposed method dynamically removes unreliable features to be fused for tracking by using the advantages of sparse representation. In order to capture the non-linear similarity of features, we extend the proposed method into a general kernelized framework, which is able to perform feature fusion on various kernel spaces. As a result, robust tracking performance is obtained. Both the qualitative and quantitative experimental results on publicly available videos show that the proposed method outperforms both sparse representation-based and fusion based-trackers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA