Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584396

RESUMO

Because of their innate chemical stability, the ubiquitous perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been dubbed "forever chemicals" and have attracted considerable attention. However, their stability under environmental conditions has not been widely verified. Herein, perfluorooctanoic acid (PFOA), a widely used and detected PFAS, was found to be spontaneously degraded in aqueous microdroplets under room temperature and atmospheric pressure conditions. This unexpected fast degradation occurred via a unique multicycle redox reaction of PFOA with interfacial reactive species on the droplet surface. Similar degradation was observed for other PFASs. This study extends the current understanding of the environmental fate and chemistry of PFASs and provides insight into aid in the development of effective methods for removing PFASs.

2.
Biochem Biophys Res Commun ; 716: 150026, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701557

RESUMO

BACKGROUND: Previous in vivo and in vitro studies have demonstrated that estrogen receptor agonist G-1 regulates glucose and lipid metabolism. This study focused on the effects of G-1 on cardiometabolic syndrome and anti-obesity under a high fat diet (HFD). METHODS: Bilateral ovariectomized female mice were fed an HFD for 6 weeks, and treated them with G-1. A cardiomyocyte insulin resistance model was used to simulate the in vivo environment. The main outcome measures were blood glucose, body weight, and serum insulin levels to assess insulin resistance, while cardiac function and degree of fibrosis were assessed by cardiac ultrasound and pathological observations. We also examined the expression of p-AMPK, p-AKT, and GLUT4 in mice hearts and in vitro models to explore the mechanism by which G-1 regulates insulin signaling. RESULTS: G-1 reduced body weight in mice on an HFD, but simultaneously increased blood glucose and promoted insulin resistance, resulting in myocardial damage. This damage included disordered cardiomyocytes, massive accumulation of glycogen, extensive fibrosis of the heart, and thickening of the front and rear walls of the left ventricle. At the molecular level, G-1 enhances gluconeogenesis and promotes glucose production by increasing the activity of pyruvate carboxylase (PC) while inhibiting GLUT4 translocation via the AMPK/TBC1D1 pathway, thereby limiting glucose uptake. CONCLUSION: Despite G-1's the potential efficacy in weight reduction, the concomitant induction of insulin resistance and cardiac impairment in conjunction with an HFD raises significant concerns. Therefore, comprehensive studies of its safety profile and effects under specific conditions are essential prior to clinical use.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Camundongos Endogâmicos C57BL , Ovariectomia , Receptores Acoplados a Proteínas G , Animais , Feminino , Dieta Hiperlipídica/efeitos adversos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Camundongos , Transportador de Glucose Tipo 4/metabolismo , Receptores de Estrogênio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Insulina/metabolismo , Insulina/sangue
3.
New Phytol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934055

RESUMO

Climate warming poses a significant threat to global crop production and food security. However, our understanding of the molecular mechanisms governing thermoresponsive development in crops remains limited. Here we report that the auxiliary subunit of N-terminal acetyltransferase A (NatA) in rice OsNAA15 is a prerequisite for rice thermoresponsive growth. OsNAA15 produces two isoforms OsNAA15.1 and OsNAA15.2, via temperature-dependent alternative splicing. Among the two, OsNAA15.1 is more likely to form a stable and functional NatA complex with the potential catalytic subunit OsNAA10, leading to a thermoresponsive N-terminal acetylome. Intriguingly, while OsNAA15.1 promotes plant growth under elevated temperatures, OsNAA15.2 exhibits an inhibitory effect. We identified two glycolate oxidases (GLO1/5) as major substrates from the thermoresponsive acetylome. These enzymes are involved in hydrogen peroxide (H2O2) biosynthesis via glycolate oxidation. N-terminally acetylated GLO1/5 undergo their degradation through the ubiquitin-proteasome system. This leads to reduced reactive oxygen species (ROS) production, thereby promoting plant growth, particularly under high ambient temperatures. Conclusively, our findings highlight the pivotal role of N-terminal acetylation in orchestrating the glycolate-mediated ROS homeostasis to facilitate thermoresponsive growth in rice.

4.
Glob Chang Biol ; 30(7): e17428, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39021355

RESUMO

Global hydroclimatic variability is increasing with more frequent extreme dry and wet years, severely destabilizing terrestrial ecosystem productivity. However, what regulates the consequence of precipitation extremes on productivity remains unclear. Based on a 9-year field manipulation experiment on the Qinghai-Tibetan Plateau, we found that the responses of gross primary productivity (GPP) to extreme drought and wetness were differentially regulated by nitrogen (N) deposition. Over increasing N deposition, extreme dry events reduced GPP more. Among the 12 biotic and abiotic factors examined, this was mostly explained by the increased plant canopy height and proportion of drought-sensitive species under N deposition, making photosynthesis more sensitive to hydraulic stress. While extreme wet events increased GPP, their effect did not shift over N deposition. These site observations were complemented by a global synthesis derived from the GOSIF GPP dataset, which showed that GPP sensitivity to extreme drought was larger in ecosystems with higher N deposition, but GPP sensitivity to extreme wetness did not change with N deposition. Our findings indicate that intensified hydroclimatic variability would lead to a greater loss of land carbon sinks in the context of increasing N deposition, due to that GPP losses during extreme dry years are more pronounced, yet without a synchronous increase in GPP gains during extreme wet years. The study implies that the conservation and management against climate extremes merit particular attention in ecosystems subject to N deposition.


Assuntos
Secas , Nitrogênio , Nitrogênio/metabolismo , Nitrogênio/análise , Ecossistema , Mudança Climática , Fotossíntese , China , Tibet
5.
Environ Sci Technol ; 58(1): 649-659, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38131199

RESUMO

Iodine oxoacids (HIO3 and HIO2)-driven nucleation has been suggested to efficiently contribute to new particle formation (NPF) in marine atmospheres. Abundant atmospheric nucleation precursors may further enhance HIO3-HIO2-driven nucleation through various multicomponent nucleation mechanisms. However, the specific enhancing potential (EP) of different precursors remains largely unknown. Herein, the EP-based screening model of precursors and enhancing mechanism of the precursor with the highest EP on HIO3-HIO2 nucleation were investigated. The formation free energies (ΔG), as critical parameters for evaluating EP, were calculated for the dimers of 63 selected precursors with HIO2. Based on the ΔG values, (1) a quantitative structure-activity relationship model was developed for evaluating ΔG of other precursors and (2) atmospheric concentrations of 63 (precursor)1(HIO2)1 dimer clusters were assessed to identify the precursors with the highest EP for HIO3-HIO2-driven nucleation by combining with earlier results for the nucleation with HIO3 as the partner. Methanesulfonic acid (MSA) was found to be one of the precursors with the highest EP. Finally, we found that MSA can effectively enhance HIO3-HIO2 nucleation at atmospheric conditions by studying larger MSA-HIO3-HIO2 clusters. These results augment our current understanding of HIO3-HIO2 and MSA-driven nucleation and may suggest a larger impact of HIO2 in atmospheric aerosol nucleation.


Assuntos
Atmosfera , Clima , Mesilatos
6.
Pharmacology ; 109(3): 169-179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583431

RESUMO

INTRODUCTION: Fisetin has been demonstrated to inhibit the occurrence of atherosclerosis; however, the mechanism of fisetin suppressing atherosclerosis remains elusive. METHODS: The function of fisetin in the inhibition of atherosclerosis was evaluated by hematoxylin and eosin and Oil Red O staining in ApoE-/- mice. Molecular biomarkers of atherosclerosis progression were detected by Western blot and qPCR. Moreover, the inhibition of atherosclerosis on oxidative stress and ferroptosis was evaluated by immunofluorescence staining, qPCR, and Western blot assays. RESULTS: The obtained results showed that serum lipid was attenuated and consequentially the formation of atherosclerosis was also suppressed by fisetin in ApoE-/- mice. Exploration of the mechanism revealed that molecular biomarkers of atherosclerosis were decreased under fisetin treatment. The level of reactive oxygen species and malondialdehyde declined, while the activity of superoxide dismutases and glutathione peroxidase was increased under the fisetin treatment. Additionally, the suppressor of ferroptosis, glutathione peroxidase 4 proteins, was elevated. The ferritin was decreased in the aortic tissues treated with fisetin. CONCLUSIONS: In summary, fisetin attenuated the formation of atherosclerosis through the inhibition of oxidative stress and ferroptosis in the aortic tissues of ApoE-/- mice.


Assuntos
Apolipoproteínas E , Aterosclerose , Ferroptose , Flavonóis , Estresse Oxidativo , Animais , Flavonóis/farmacologia , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Aterosclerose/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Camundongos , Masculino , Apolipoproteínas E/genética , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Flavonoides/farmacologia , Camundongos Knockout para ApoE , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo
7.
Biochem Biophys Res Commun ; 671: 105-115, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37300940

RESUMO

Calcium overload performs a crucial function in the pathogenesis of myocardial ischemia-reperfusion (I/R) damage, which contributes to mitochondrial impairment and apoptosis of cardiomyocytes. Suberoylanilide hydroxamic acid (SAHA), a small molecule histone deacetylases inhibitor with modulatory capacity on Na+-Ca2+ exchanger (NCX), is proven to have protective potential towards cardiac remodeling and injury, but the mechanism remains unclear. Hence, Hence, our present research explored the modulation of NCX-Ca2+-CaMKII by SAHA in myocardial I/R damage. Our outcomes indicate that in vitro hypoxia and reoxygenation models of myocardial cells, SAHA treatment inhibited the increase in expression of NCX1, intracellular Ca2+ concentration, expression of CaMKII and self-phosphorylated CaMKII, and cell apoptosis. In addition, SAHA treatment improved myocardial cell mitochondrial swelling inhibited mitochondrial membrane potential diminution and the openness of the mitochondrial permeability transition pore, and protected against mitochondrial dysfunction following I/R injury. In vivo, SAHA treatment alleviated the decrease in FS% and EF%, the increase in the myocardial infarct area, and myocardial enzyme levels caused by I/R injury, while also reducing myocardial cell apoptosis, and inhibiting mitochondrial fission and mitochondrial membrane rupture. These results indicated that SAHA treatment alleviated myocardial cell apoptosis as well as mitochondrial dysfunction resulting from myocardial I/R impairment, and contributed to myocardial function recovery by inhibiting the NCX-Ca2+-CaMKII pathway. These findings offered additional theoretical support to explore the mechanism of SAHA as a therapeutic agent in cardiac I/R damage and develop new treatment strategies.


Assuntos
Inibidores de Histona Desacetilases , Traumatismo por Reperfusão Miocárdica , Humanos , Vorinostat/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Miócitos Cardíacos/metabolismo , Apoptose
8.
New Phytol ; 239(5): 1834-1851, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36829298

RESUMO

Central metabolism produces amino and fatty acids for protein and lipids that establish seed value. Biosynthesis of storage reserves occurs in multiple organelles that exchange central intermediates including two essential metabolites, malate, and pyruvate that are linked by malic enzyme. Malic enzyme can be active in multiple subcellular compartments, partitioning carbon and reducing equivalents for anabolic and catabolic requirements. Prior studies based on isotopic labeling and steady-state metabolic flux analyses indicated malic enzyme provides carbon for fatty acid biosynthesis in plants, though genetic evidence confirming this role is lacking. We hypothesized that increasing malic enzyme flux would alter carbon partitioning and result in increased lipid levels in soybeans. Homozygous transgenic soybean plants expressing Arabidopsis malic enzyme alleles, targeting the translational products to plastid or outside the plastid during seed development, were verified by transcript and enzyme activity analyses, organelle proteomics, and transient expression assays. Protein, oil, central metabolites, cofactors, and acyl-acyl carrier protein (ACPs) levels were quantified overdevelopment. Amino and fatty acid levels were altered resulting in an increase in lipids by 0.5-2% of seed biomass (i.e. 2-9% change in oil). Subcellular targeting of a single gene product in central metabolism impacts carbon and reducing equivalent partitioning for seed storage reserves in soybeans.


Assuntos
Arabidopsis , Carbono , Carbono/metabolismo , Glycine max/metabolismo , Sementes/metabolismo , Ácidos Graxos/metabolismo , Arabidopsis/genética
9.
Plant Physiol ; 190(1): 267-279, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35652738

RESUMO

The rate of algal and cyanobacterial respiration in the light is an important ecophysiological term that remains to be completely characterized and quantified. To address this issue, we exploited process-specific decarboxylation rates from flux balance analysis and isotopically nonstationary metabolic flux analysis. Our study, based on published data, suggested that decarboxylation is about 22% of net CO2 assimilation when the tricarboxylic acid cycle is completely open (characterized by the commitment of alpha ketoglutarate to amino acid synthesis and very low rates of succinate formation). This estimate was supported by calculating the decarboxylation rates required to synthesize the major components of biomass (proteins, lipids, and carbohydrates) at their typical abundance. Of the 22 CO2 molecules produced by decarboxylation (normalized to net assimilation = 100), approximately 13 were from pyruvate and 3 were from isocitrate. The remaining six units of decarboxylation were in the amino acid synthesis pathways outside the tricarboxylic acid cycle. A small additional flux came from photorespiration, decarboxylations of six phosphogluconate in the oxidative pentose phosphate pathway, and decarboxylations in the syntheses of lower-abundance compounds, including pigments and ribonucleic acids. This general approach accounted for the high decarboxylation rates in algae and cyanobacteria compared to terrestrial plants. It prompts a simple speculation for the origin of the Kok effect and helps constrain the photoautotrophic respiration rate, in the light, in the euphotic zone of the ocean and lakes.


Assuntos
Dióxido de Carbono , Fitoplâncton , Aminoácidos , Dióxido de Carbono/metabolismo , Luz , Fitoplâncton/metabolismo , Ácido Pirúvico/metabolismo , Respiração
10.
Environ Sci Technol ; 57(17): 6944-6954, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083433

RESUMO

Iodic acid (IA) has recently been recognized as a key driver for new particle formation (NPF) in marine atmospheres. However, the knowledge of which atmospheric vapors can enhance IA-induced NPF remains limited. The unique halogen bond (XB)-forming capacity of IA makes it difficult to evaluate the enhancing potential (EP) of target compounds on IA-induced NPF based on widely studied sulfuric acid systems. Herein, we employed a three-step procedure to evaluate the EP of potential atmospheric nucleation precursors on IA-induced NPF. First, we evaluated the EP of 63 precursors by simulating the formation free energies (ΔG) of the IA-containing dimer clusters. Among all dimer clusters, 44 contained XBs, demonstrating that XBs are frequently formed. Based on the calculated ΔG values, a quantitative structure-activity relationship model was developed for evaluating the EP of other precursors. Second, amines and O/S-atom-containing acids were found to have high EP, with diethylamine (DEA) yielding the highest potential to enhance IA-induced nucleation by combining both the calculated ΔG and atmospheric concentration of considered 63 precursors. Finally, by studying larger (IA)1-3(DEA)1-3 clusters, we found that the IA-DEA system with merely 0.1 ppt (2.5×106 cm-3) DEA yields comparable nucleation rates to that of the IA-iodous acid system.


Assuntos
Atmosfera , Iodatos , Atmosfera/química , Aminas , Gases
11.
BMC Plant Biol ; 22(1): 292, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701737

RESUMO

BACKGROUND: Modification of histone acetylation is a ubiquitous and reversible process in eukaryotes and prokaryotes and plays crucial roles in the regulation of gene expression during plant development and stress responses. Histone acetylation is co-regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). HAT plays an essential regulatory role in various growth and development processes by modifying the chromatin structure through interactions with other histone modifications and transcription factors in eukaryotic cells, affecting the transcription of genes. Comprehensive analyses of HAT genes have been performed in Arabidopsis thaliana and Oryza sativa. However, little information is available on the HAT genes in foxtail millet (Setaria italica [L.] P. Beauv). RESULTS: In this study, 24 HAT genes (SiHATs) were identified and divided into four groups with conserved gene structures via motif composition analysis. Phylogenetic analysis of the genes was performed to predict functional similarities between Arabidopsis thaliana, Oryza sativa, and foxtail millet; 19 and 2 orthologous gene pairs were individually identified. Moreover, all identified HAT gene pairs likely underwent purified selection based on their non-synonymous/synonymous nucleotide substitutions. Using published transcriptome data, we found that SiHAT genes were preferentially expressed in some tissues and organs. Stress responses were also examined, and data showed that SiHAT gene transcription was influenced by drought, salt, low nitrogen, and low phosphorus stress, and that the expression of four SiHATs was altered as a result of infection by Sclerospora graminicola. CONCLUSIONS: Results indicated that histone acetylation may play an important role in plant growth and development and stress adaptations. These findings suggest that SiHATs play specific roles in the response to abiotic stress and viral infection. This study lays a foundation for further analysis of the biological functions of SiHATs in foxtail millet.


Assuntos
Arabidopsis , Oryza , Setaria (Planta) , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histona Acetiltransferases/genética , Histonas/genética , Histonas/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Setaria (Planta)/fisiologia , Estresse Fisiológico/genética
12.
Plant Physiol ; 185(2): 295-317, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721892

RESUMO

Sugar supply is a key component of hypoxia tolerance and acclimation in plants. However, a striking gap remains in our understanding of mechanisms governing sugar impacts on low-oxygen responses. Here, we used a maize (Zea mays) root-tip system for precise control of sugar and oxygen levels. We compared responses to oxygen (21 and 0.2%) in the presence of abundant versus limited glucose supplies (2.0 and 0.2%). Low-oxygen reconfigured the transcriptome with glucose deprivation enhancing the speed and magnitude of gene induction for core anaerobic proteins (ANPs). Sugar supply also altered profiles of hypoxia-responsive genes carrying G4 motifs (sources of regulatory quadruplex structures), revealing a fast, sugar-independent class followed more slowly by feast-or-famine-regulated G4 genes. Metabolite analysis showed that endogenous sugar levels were maintained by exogenous glucose under aerobic conditions and demonstrated a prominent capacity for sucrose re-synthesis that was undetectable under hypoxia. Glucose abundance had distinctive impacts on co-expression networks associated with ANPs, altering network partners and aiding persistence of interacting networks under prolonged hypoxia. Among the ANP networks, two highly interconnected clusters of genes formed around Pyruvate decarboxylase 3 and Glyceraldehyde-3-phosphate dehydrogenase 4. Genes in these clusters shared a small set of cis-regulatory elements, two of which typified glucose induction. Collective results demonstrate specific, previously unrecognized roles of sugars in low-oxygen responses, extending from accelerated onset of initial adaptive phases by starvation stress to maintenance and modulation of co-expression relationships by carbohydrate availability.


Assuntos
Oxigênio/metabolismo , Proteínas de Plantas/genética , Açúcares/metabolismo , Transcriptoma , Zea mays/metabolismo , Anaerobiose , Glucose/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Piruvato Descarboxilase/genética , Estresse Fisiológico , Zea mays/genética
13.
Plant Cell Environ ; 45(10): 2923-2942, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35906186

RESUMO

Signalling roles of hydrogen sulphide (H2 S) in stress biology are widely reported but not sufficiently established to urge its use in agronomic practice. Our lack of quantitative understanding of the metabolic rewiring in H2 S signalling makes it difficult to elucidate its functions in stress tolerance on the biochemical level. Here, Malus hupehensis Rehd. var. pingyiensis seedlings were first treated with salt stress for 2 weeks and then treated with four different concentrations of NaHS. Through vigorous investigations, including phenotypic analysis, 13 C transient labelling and targeted metabolic and transcriptomic analysis, for the first time in the seedlings of a woody fruit crop, we found out that H2 S recycles fixed carbons through glycolysis and tricarboxylic acid cycle to inhibit the futile accumulation of carbohydrates, to maintain an efficient CO2 assimilation, to keep a balanced starch metabolism, to produce sufficient H2 O2 , to maintain malate/γ-aminobutyric acid homeostasis via an H2 O2 -induced anion channel (aluminium-activated malate transporter) and eventually to improve salt-stress recovery. Our results systematically demonstrate the vital roles of central carbon metabolism in H2 S signalling and clarify the mode of action of H2 S in apple seedlings. We conclude that H2 S signalling interacts with central carbon metabolism in a bottom-up manner to recover plant growth after salt stress.


Assuntos
Malus , Carbono/metabolismo , Malatos/metabolismo , Malus/genética , Malus/metabolismo , Estresse Salino , Plântula/metabolismo
14.
Environ Sci Technol ; 56(12): 7751-7760, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35593326

RESUMO

Atmospheric amines are considered to be an effective enhancer for methanesulfonic acid (MSA)-driven nucleation. However, out of the 195 detected atmospheric amines, the enhancing potential (EP) has so far only been studied for five amines. This severely hinders the understanding of the contribution of amines to MSA-driven nucleation. Herein, a two-step procedure was employed to probe the EP of various amines on MSA-driven nucleation. Initially, the formation free energies (ΔG) of 50 MSA-amine dimer clusters were calculated. Based on the calculated ΔG values, a robust quantitative structure-activity relationship (QSAR) model was built and utilized to predict the ΔG values of the remaining 145 amines. The QSAR model identified two guanidino-containing compounds as the potentially strongest enhancer for MSA-driven nucleation. Second, the EP of guanidino-containing compounds was studied by employing larger clusters and selecting guanidine (Gud) as a representative. The results indicate that Gud indeed has the strongest EP. The Gud-MSA system presents a unique clustering mechanism, proceeding via the initial formation of the (Gud)1(MSA)1 cluster, and subsequently by cluster collisions with either a (Gud)1(MSA)1 or (Gud)2(MSA)2 cluster. The developed QSAR model and the identification of amines with the strongest EP provide a foundation for comprehensively evaluating the contribution of atmospheric amines to MSA-driven nucleation.


Assuntos
Aminas , Mesilatos
15.
Environ Sci Technol ; 56(19): 14166-14177, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36126141

RESUMO

Nucleation of neutral iodine particles has recently been found to involve both iodic acid (HIO3) and iodous acid (HIO2). However, the precise role of HIO2 in iodine oxoacid nucleation remains unclear. Herein, we probe such a role by investigating the cluster formation mechanisms and kinetics of (HIO3)m(HIO2)n (m = 0-4, n = 0-4) clusters with quantum chemical calculations and atmospheric cluster dynamics modeling. When compared with HIO3, we find that HIO2 binds more strongly with HIO3 and also more strongly with HIO2. After accounting for ambient vapor concentrations, the fastest nucleation rate is predicted for mixed HIO3-HIO2 clusters rather than for pure HIO3 or HIO2 ones. Our calculations reveal that the strong binding results from HIO2 exhibiting a base behavior (accepting a proton from HIO3) and forming stronger halogen bonds. Moreover, the binding energies of (HIO3)m(HIO2)n clusters show a far more tolerant choice of growth paths when compared with the strict stoichiometry required for sulfuric acid-base nucleation. Our predicted cluster formation rates and dimer concentrations are acceptably consistent with those measured by the Cosmic Leaving Outdoor Droplets (CLOUD) experiment. This study suggests that HIO2 could facilitate the nucleation of other acids beyond HIO3 in regions where base vapors such as ammonia or amines are scarce.

16.
Plant Cell Rep ; 41(4): 893-904, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35094124

RESUMO

KEY MESSAGE: The dynamics of cotton fiber elongation and microfibirl deposition orientation were delineated; advanced ethylene synthesis and redox reaction homeostasis may be crucial for high-quality fiber formation. Fiber length, strength, and fineness determine the use and commercial value of cotton fiber, but their underlying molecular mechanisms remain obscure. We compared the dynamic change trajectories of length, diameter and microfibril orientation angle of the fibers produced by an introgression line SY6167 which generates high-quality fibers even better than Sea island cotton with those of the common-quality fibers from TM-1 across 5 to 30 days post anthesis (DPA). The proteomes were profiled and compared at six representative time points using 2-DE and MS/MS. 14 proteins differentially expressed inside each of cotton line temporally and significantly different tween the two lines were identified. The dynamic change trajectories of fiber length and microfibril angle are close to "s" and reverse "s" growth curves, respectively. SY6167 and TM-1 fibers entered the logarithmic elongation phase simultaneously at 10 DPA, and SY6167 kept elongating logarithmically for 2 more days than TM-1. In parallel to logarithmic elongation, microfibril orientation angles dived sharply, and SY6167 declined faster for a shorter duration than TM-1. 53% of the identified proteins are related to redox homeostasis, and most of them are expressed at higher levels in SY6167 during logarithmic elongation. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO) started to accumulate at 16 DPA in SY6167, and its encoding genes were highly expressed at this stage, with a much higher level than TM-1. These findings suggest high-quality fibers are associated with high expression of the proteins related to stress and redox homeostasis, the continuously elevated expression of ethylene synthesis ACO gene may play an essential role.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteômica , Fibra de Algodão , Perfilação da Expressão Gênica , Gossypium/genética , Espectrometria de Massas em Tandem
17.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293472

RESUMO

The photoprotective role of anthocyanin remains controversial. In this study, we explored the effects of anthocyanin on photosynthesis and photoprotection using transgenic 'Galaxy Gala' apple plants overexpressing MdMYB10 under high light stress. The overexpression of MdMYB10 dramatically enhanced leaf anthocyanin accumulation, allowing more visible light to be absorbed, particularly in the green region. However, through post-transcriptional regulation, anthocyanin accumulation lowered leaf photosynthesis in both photochemical reaction and CO2 fixation capacities. Anthocyanin accumulation also led to a decreased de-epoxidation state of the xanthophyll cycle and antioxidant capacities, but this is most likely a response to the light-shielding effect of anthocyanin, as indicated by a higher chlorophyll concentration and lower chlorophyll a/b ratio. Under laboratory conditions when detached leaves lost carbon fixation capacity due to the limitation of CO2 supply, the photoinhibition of detached transgenic red leaves was less severe under strong white, green, or blue light, but it became more severe in response to strong red light compared with that of the wild type. In field conditions when photosynthesis was performed normally in both green and transgenic red leaves, the degree of photoinhibition was comparable between transgenic red leaves and wild type leaves, but it was less severe in transgenic young shoot bark compared with the wild type. Taken together, these data show that anthocyanin protects plants from high light stress by absorbing excessive visible light despite reducing photosynthesis.


Assuntos
Fabaceae , Malus , Antocianinas/metabolismo , Clorofila A , Malus/genética , Malus/metabolismo , Antioxidantes/metabolismo , Dióxido de Carbono , Fotossíntese/fisiologia , Clorofila , Folhas de Planta/metabolismo , Luz , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fabaceae/metabolismo , Xantofilas/metabolismo
18.
BMC Plant Biol ; 21(1): 79, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549046

RESUMO

BACKGROUND: MADS-box transcription factors (TFs) are the key regulators of multiple developmental processes in plants; among them, a chrysanthemum MADS-box TF CmANR1 has been isolated and described as functioning in root development in response to high nitrate concentration signals. However, how CmANR1 affects root and shoot development remains unclear. RESULTS: We report that CmANR1 plays a positive role in root system development in chrysanthemum throughout the developmental stages of in vitro tissue cultures. Metabolomics combined with transcriptomics assays show that CmANR1 promotes robust root system development by facilitating nitrate assimilation, and influencing the metabolic pathways of amino acid, glycolysis, and the tricarboxylic acid cycle (TCA) cycle. Also, we found that the expression levels of TFs associated with the nitrate signaling pathways, such as AGL8, AGL21, and LBD29, are significantly up-regulated in CmANR1-transgenic plants relative to the wild-type (WT) control; by contrast, the expression levels of RHD3-LIKE, LBD37, and GATA23 were significantly down-regulated. These results suggest that these nitrate signaling associated TFs are involved in CmANR1-modulated control of root development. In addition, CmANR1 also acts as a positive regulator to control shoot growth and development. CONCLUSIONS: These findings provide potential mechanisms of MADS-box TF CmANR1 modulation of root and shoot development, which occurs by regulating a series of nitrate signaling associated TFs, and influencing the metabolic pathways of amino acid and glycolysis, as well as TCA cycle and nitrate assimilation.


Assuntos
Chrysanthemum/genética , Genes de Plantas , Proteínas de Domínio MADS/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Chrysanthemum/crescimento & desenvolvimento , Ciclo do Ácido Cítrico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicólise , Proteínas de Domínio MADS/metabolismo , Metabolômica , Modelos Biológicos , Nitratos/metabolismo , Fotossíntese , Análise de Componente Principal , Transdução de Sinais , Transcriptoma/genética
19.
Plant Biotechnol J ; 19(2): 285-299, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32757335

RESUMO

Changes in carbohydrates and organic acids largely determine the palatability of edible tissues of horticulture crops. Elucidating the potential molecular mechanisms involved in the change in carbohydrates and organic acids, and their temporal and spatial crosstalk are key steps in understanding fruit developmental processes. Here, we used apple (Malus domestica Borkh.) as research materials and found that MdbHLH3, a basic helix-loop-helix transcription factor (bHLH TF), modulates the accumulation of malate and carbohydrates. Biochemical analyses demonstrated that MdbHLH3 directly binds to the promoter of MdcyMDH that encodes an apple cytosolic NAD-dependent malate dehydrogenase, activating its transcriptional expression, thereby promoting malate accumulation in apple fruits. Additionally, MdbHLH3 overexpression increased the photosynthetic capacity and carbohydrate levels in apple leaves and also enhanced the carbohydrate accumulation in fruits by adjusting carbohydrate allocation from sources to sinks. Overall, our findings provide new insights into the mechanism of how the bHLH TF MdbHLH3 modulates the fruit quality. It directly regulates the expression of cytosolic malate dehydrogenase MdcyMDH to coordinate carbohydrate allocation and malate accumulation in apple.


Assuntos
Malus , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Frutose , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malatos , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Environ Sci Technol ; 55(8): 4399-4409, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33769798

RESUMO

The atmospheric chemistry of isoprene has broad implications for regional air quality and the global climate. Allylic radicals, taking 13-17% yield in the isoprene oxidation by •Cl, can contribute as much as 3.6-4.9% to all possible formed intermediates in local regions at daytime. Considering the large quantity of isoprene emission, the chemistry of the allylic radicals is therefore highly desirable. Here, we investigated the atmospheric oxidation mechanism of the allylic radicals using quantum chemical calculations and kinetics modeling. The results indicate that the allylic radicals can barrierlessly combine with O2 to form peroxy radicals (RO2•). Under ≤100 ppt NO and ≤50 ppt HO2• conditions, the formed RO2• mainly undergo two times "successive cyclization and O2 addition" to finally form the product fragments 2-alkoxy-acetaldehyde (C2H3O2•) and 3-hydroperoxy-2-oxopropanal (C3H4O4). The presented reaction illustrates a novel successive cyclization-driven autoxidation mechanism. The formed 3-hydroperoxy-2-oxopropanal product is a new isomer of the atmospheric C3H4O4 family and a potential aqueous-phase secondary organic aerosol precursor. Under >100 ppt NO condition, NO can mediate the cyclization-driven autoxidation process to form C5H7NO3, C5H7NO7, and alkoxy radical-related products. The proposed novel autoxidation mechanism advances our current understanding of the atmospheric chemistry of both isoprene and RO2•.


Assuntos
Butadienos , Hemiterpenos , Aerossóis , Ciclização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA