RESUMO
DNA hydroxylation catalyzed by Tet dioxygenases occurs abundantly in neurons in mammals. However, effects of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) expression and hydroxymethylation status on neuron injury remain unclear. This study was designed to explore the effects of TET1 and TET2 expression in the inflammatory pain of rats induced by complete Freund's adjuvant (CFA). Mechanical paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL) were detected to assess pain behavior. The expression of TET1 and TET2 were measured in the dorsal root ganglion (DRG) with western blotting analysis. Immunofluorescence staining is employed to detect the expression and co-location of TRPV1 with TET1. Intrathecal administration of Bobcat339 was used to inhibit TET1 function in dorsal root ganglion. The paw withdrawal threshold and thermal withdrawal latency of rats were significantly reduced after CFA Injection. Western blot results showed that the expression of TET1 was significantly increased at 3 days after CFA injection, but TET2 had no statistical difference. Immunofluorescence results showed that TET1 was co-localized with TRPV1. Intrathecal administration of Bobcat339 improved mechanical and thermal pain threshold in CFA rats. Our findings highlight the role of TET1 in chronic inflammatory pain model. The expression of TET1 was increased in CFA rats, and suppression of TET1 will ameliorate inflammatory pain.
Assuntos
Dor Crônica , Dioxigenases , Animais , Ratos , Dor Crônica/complicações , Dioxigenases/metabolismo , Adjuvante de Freund/toxicidade , Gânglios Espinais , Limiar da DorRESUMO
The aim of the present study was to investigate the role of autophagy in response to ionizing radiation (IR) in CNE-2 human nasopharyngeal carcinoma cells and to demonstrate the function of poly(ADP-ribose) polymerase-1 (PARP-1) in the regulation of IR-induced autophagy. Microtubule-associated protein 1 light chain 3 (LC3) and poly(ADP-ribose) (PAR) were assessed using western blotting. Ultrastructural analysis was performed using transmission electron microscopy (TEM). The percentage of apoptotic cells was assessed by flow cytometry. The MTT method was used to detect cell viability of CNE-2 cells at different time points after IR. Clonogenic survival assays were used to evaluate the radiosensitivity of nasopharyngeal carcinoma cells treated with IR and IR combined with autophagy inhibitor (chloroquine phosphate), with autophagy inducer (rapamycin) or with PARP-1 inhibitor 3-amino benzamide (3AB). IR induced a massive accumulation of autophagosomes detected by TEM and intensified the conversion of cytosolic LC3-I to LC3-II. PARP-1 activation was accompanied by strong upregulation of PAR and LC3-II expression in CNE-2 cells. Compared with radiation alone, chloroquine phosphate (CDP) or 3AB combined with IR significantly decreased cell viability, as well as the autophagic ratio and LC3-II protein levels. Inhibition of autophagy increased radiation-induced apoptosis; rapamycin (RAPA) significantly decreased cell viability as well, but RAPA increased the autophagic ratio and LC3-II protein levels; induction of autophagy increased radiation-induced apoptosis. To conclude, PARP-1 regulates IR-induced autophagy, and PARP-1 inhibitor contributes to the radiation sensitization of CNE-2 cells. Blockade of autophagy with CDP enhanced the cytotoxicity of radiotherapy in CNE-2 cells. This suggests that inhibition of autophagy or PARP-1 may be used as an adjuvant therapy to treat nasopharyngeal carcinoma.