RESUMO
Ubiquitin-proteasome system dysfunction triggers α-synuclein aggregation, a hallmark of neurodegenerative diseases, such as Parkinson's disease (PD). However, the crosstalk between deubiquitinating enzyme (DUBs) and α-synuclein pathology remains unclear. In this study, we observed a decrease in the level of ubiquitin-specific protease 14 (USP14), a DUB, in the cerebrospinal fluid (CSF) of PD patients, particularly females. Moreover, CSF USP14 exhibited a dual correlation with α-synuclein in male and female PD patients. To investigate the impact of USP14 deficiency, we crossed USP14 heterozygous mouse (USP14+/-) with transgenic A53T PD mouse (A53T-Tg) or injected adeno-associated virus (AAV) carrying human α-synuclein (AAV-hα-Syn) in USP14+/- mice. We found that Usp14 deficiency improved the behavioral abnormities and pathological α-synuclein deposition in female A53T-Tg or AAV-hα-Syn mice. Additionally, Usp14 inactivation attenuates the pro-inflammatory response in female AAV-hα-Syn mice, whereas Usp14 inactivation demonstrated opposite effects in male AAV-hα-Syn mice. Mechanistically, the heterodimeric protein S100A8/A9 may be the downstream target of Usp14 deficiency in female mouse models of α-synucleinopathies. Furthermore, upregulated S100A8/A9 was responsible for α-synuclein degradation by autophagy and the suppression of the pro-inflammatory response in microglia after Usp14 knockdown. Consequently, our study suggests that USP14 could serve as a novel therapeutic target in PD.
Assuntos
Calgranulina A , Calgranulina B , Camundongos Transgênicos , Doença de Parkinson , Ubiquitina Tiolesterase , alfa-Sinucleína , Animais , Feminino , Humanos , Masculino , Camundongos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/metabolismo , Calgranulina B/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/deficiênciaRESUMO
Parkinson's disease (PD) is a progressive movement disorder characterized by dopaminergic (DA) neuron degeneration and the existence of Lewy bodies formed by misfolded α-synuclein. Emerging evidence supports the benefits of dietary interventions in PD due to their safety and practicality. Previously, dietary intake of α-ketoglutarate (AKG) was proved to extend the lifespan of various species and protect mice from frailty. However, the mechanism of dietary AKG's effects in PD remains undetermined. In the present study, we report that an AKG-based diet significantly ameliorated α-synuclein pathology, and rescued DA neuron degeneration and impaired DA synapses in adeno-associated virus (AAV)-loaded human α-synuclein mice and transgenic A53T α-synuclein (A53T α-Syn) mice. Moreover, AKG diet increased nigral docosahexaenoic acid (DHA) levels and DHA supplementation reproduced the anti-α-synuclein effects in the PD mouse model. Our study reveals that AKG and DHA induced microglia to phagocytose and degrade α-synuclein via promoting C1q and suppressed pro-inflammatory reactions. Furthermore, results indicate that modulating gut polyunsaturated fatty acid metabolism and microbiota Lachnospiraceae_NK4A136_group in the gut-brain axis may underlie AKG's benefits in treating α-synucleinopathy in mice. Together, our findings propose that dietary intake of AKG is a feasible and promising therapeutic approach for PD.
Assuntos
Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , Humanos , Doença de Parkinson/patologia , Ácidos Cetoglutáricos/farmacologia , Camundongos Transgênicos , Degeneração Neural/patologia , Dopamina , Ingestão de Alimentos , Modelos Animais de DoençasRESUMO
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease of colon and rectum with unknown etiology, and the lesions are mainly confined to the mucosa and submucosa of large intestine. The main clinical features of UC include diarrhea, abdominal pain, bloody purulent stool and tenesmus, which seriously affect patients' quality of life. Most of UC patients would receive drug therapy with the exception of surgery for some severe cases. However, current drugs for the treatment of UC have certain limitations including difficulty of radical treatment, adverse reactions and drug resistance after long-term use and exorbitant price of some drugs. The research and development of new drugs for the treatment of UC is urgent, and natural alkaloids are an important source. This research paid close attention to the progress of natural alkaloids from diverse medicinal plants for treating UC in the last twenty years. The potential mechanisms for the natural alkaloids in the treatment of UC was closely related to its modulation of oxidative stress, immune response, intestinal flora and improvement of the gut barrier function. Remarkable effectiveness and safety of natural-derived alkaloids make them potential candidates of UC therapy.
Assuntos
Alcaloides/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Animais , HumanosRESUMO
Astrocyte-microglia crosstalk is vital for neuronal survival and clearing aggregate accumulation in neurodegenerative diseases. While interleukin-3 (IL-3) has been reported to exert both protective and detrimental effects in neurodegenerative diseases, however, its role in α-synuclein pathology remains unclear. In this study, it is found that astrocytic IL-3 and microglial IL-3R are positively responsive to α-synuclein pathology in the brains of transgenic A53T Parkinson's disease (PD) mice and in an adeno-associated virus (AAV)-human α-synuclein (AAV-hα-Syn)-injected PD mouse model. Exogenous IL-3 infusion reduces behavioral abnormities and nigrostriatal α-synuclein pathology. Mechanistically, IL-3 induces microglial phagocytosis of pathological α-synuclein while simultaneously stimulating dopaminergic (DA) neurons to clear pathological α-synuclein via induction of autophagy through the IFN-ß/Irgm1 pathway. Due to its limited efficiency in crossing the blood-brain barrier, a precise IL-3 delivery strategy is developed by cross-linking IL-3 and RVG29 with PEG-Linker (RVG-modified IL-3 nanogels-RVG-IL3 NGs). Intravenous administration of RVG-IL3 NGs shows efficient uptake by microglia and DA neurons within the brain. RVG-IL3 NGs ameliorate motor deficits and pathological α-synuclein by improving microglial and neuronal function in the AAV-hα-Syn mouse model of PD. Collectively, IL-3 may represent a feasible therapeutic strategy for PD.
RESUMO
BACKGROUND: Ulcerative colitis (UC) is a chronic, unspecific inflammatory bowel disorder lacking effective therapeutic targets and radical drugs. Oxyberberine (OBB), a novel intestinal flora-elicited oxidative metabolite of berberine (BBR), has been revealed to exhibit diverse pharmacological properties. PURPOSE: In this follow-up study, we attempted to shed light on the possible therapeutic effect and latent mechanism of OBB on 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-evoked UC in rats. METHODS: UC rats were established via a gentle enema of TNBS. Rats were sacrificed after intragastric administration of drugs for seven days. The weight reduction, disease activity index, macroscopic and histological colonic alterations were assessed. Further investigation on molecular mechanisms was conducted by ELISA, qRT-PCR, immunohistochemistry, or Western blot. RESULTS: OBB treatment remarkably decreased the weight loss, macroscopic scores, and colonal weight/length ratio, as well as mitigated the colonic pathological deterioration and MPO vitality in colitis rats, achieving a superior protective effect to BBR. Additionally, OBB modulated the disequilibrium between pro- and anti-inflammatory factors by promoting the production of IL-13 and IL-4, and lowering the contents of TNF-α, IL-2, IL-8, and IL-22. Furthermore, OBB pretreatment dramatically ameliorated oxidative stress via enhancing antioxidant defense genes expressions (including HO-1, GCLM, GCLC, and NQO-1), thereby increasing SOD and GSH, and decreasing MDA and ROS activities. Furthermore, OBB strikingly restrained the translocation of NF-κB p65 and phosphorylation of IκBα, promoted HO-1 expression, Keap1 degradation and Nrf2 nuclear translocation. CONCLUSION: The study firstly indicated that OBB had a superior therapeutic effect than BBR against TNBS-elicited colitis in rats. The protective effect of OBB might be closely related to the modulation of Keap1/Nrf2/NF-κB-mediated inflammatory response and oxidant stress. The evidences highlight the potentiality of OBB as a prospective candidate for the amelioration of colitis.
Assuntos
Colite Ulcerativa , Colite , Ratos , Animais , NF-kappa B/metabolismo , Ácido Trinitrobenzenossulfônico/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Seguimentos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/tratamento farmacológico , Transdução de Sinais , Colite Ulcerativa/tratamento farmacológico , Estresse OxidativoRESUMO
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder, which is characterized by dopaminergic (DA) neuron death and the aggregation of neurotoxic α-synuclein. Cntnap4, a risk gene of autism, has been implicated to participate in PD pathogenesis. Here we showed Cntnap4 lacking exacerbates α-synuclein pathology, nigrostriatal DA neuron degeneration and motor impairment, induced by injection of adeno-associated viral vector (AAV)-mediated human α-synuclein overexpression (AAV-hα-Syn). This scenario was further validated in A53T α-synuclein transgenic mice injected with AAV-Cntnap4 shRNA. Mechanistically, α-synuclein derived from damaged DA neuron stimulates astrocytes to release complement C3, activating microglial C3a receptor (C3aR), which in turn triggers microglia to secrete complement C1q and pro-inflammatory cytokines. Thus, the astrocyte-microglia crosstalk further drives DA neuron death and motor dysfunction in PD. Furthermore, we showed that in vivo depletion of microglia and microglial targeted delivery of a novel C3aR antagonist (SB290157) rescue the aggravated α-synuclein pathology resulting from Cntnap4 lacking. Together, our results indicate that Cntnap4 plays a key role in α-synuclein pathogenesis by regulating glial crosstalk and may be a potential target for PD treatment.
Assuntos
Proteínas de Membrana , Degeneração Neural , Proteínas do Tecido Nervoso , Doença de Parkinson , Camundongos Transgênicos , Animais , Camundongos , Humanos , Masculino , Camundongos Endogâmicos C57BL , alfa-Sinucleína/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Complemento C3/metabolismo , Receptores de Complemento/metabolismo , Neurônios Dopaminérgicos/metabolismo , Astrócitos/metabolismo , Degeneração Neural/patologia , Microglia/metabolismo , Doença de Parkinson/fisiopatologia , Ferroptose , Mitocôndrias , InflamaçãoRESUMO
Neuroinflammation, for which microglia are the predominant contributors, is a significant risk factor for cognitive dysfunction. Riboflavin (also known as vitamin B2) ameliorates cognitive impairment via anti-oxidative stress and anti-inflammation properties; however, the underlying mechanisms linking riboflavin metabolism and microglial function in cognitive impairment remain unclear. Here, it is demonstrated that riboflavin kinase (RFK), a critical enzyme in riboflavin metabolism, is specifically expressed in microglia. An intermediate product of riboflavin, flavin mononucleotide (FMN), inhibited RFK expression via regulation of lysine-specific methyltransferase 2B (KMT2B). FMN supplementation attenuated the pro-inflammatory TNFR1/NF-κB signaling pathway, and this effect is abolished by KMT2B overexpression. To improve the limited anti-inflammatory efficiency of free FMN, a biomimetic microglial nanoparticle strategy (designated as MNPs@FMN) is established, which penetrated the blood brain barrier with enhanced microglial-targeted delivery efficiency. Notably, MNPs@FMN ameliorated cognitive impairment and dysfunctional synaptic plasticity in a lipopolysaccharide-induced inflammatory mouse model and in a 5xFAD mouse model of Alzheimer's disease. Taken together, biomimetic microglial delivery of FMN may serve as a potential therapeutic approach for inflammation-dependent cognitive decline.
Assuntos
Disfunção Cognitiva , Microglia , Camundongos , Animais , Microglia/metabolismo , Doenças Neuroinflamatórias , Biomimética , Riboflavina/farmacologia , Riboflavina/metabolismo , Disfunção Cognitiva/tratamento farmacológicoRESUMO
Contactin-associated protein-like 4 (Cntnap4) is critical for GABAergic transmission in the brain. Impaired Cntnap4 function is implicated in neurological disorders, such as autism; however, the role of Cntnap4 on memory processing is poorly understood. Here, we demonstrate that hippocampal Cntnap4 deficiency in female mice manifests as impaired cognitive function and synaptic plasticity. The underlying mechanisms may involve effects on the pro-inflammatory response resulting in dysfunctional GABAergic transmission and activated tryptophan metabolism. To efficiently and accurately inhibit the pro-inflammatory reaction, we established a biomimetic microglial nanoparticle strategy to deliver FDA-approved PLX3397 (termed MNPs@PLX). We show MNPs@PLX successfully penetrates the blood brain barrier and facilitates microglial-targeted delivery of PLX3397. Furthermore, MNPs@PLX attenuates cognitive decline, dysfunctional synaptic plasticity, and pro-inflammatory response in female heterozygous Cntnap4 knockout mice. Together, our findings show loss of Cntnap4 causes pro-inflammatory cognitive decline that is effectively prevented by supplementation with microglia-specific inhibitors; thus validating the targeting of microglial function as a therapeutic intervention in neurocognitive disorders.
RESUMO
BACKGROUND: Autism spectrum disorder (ASD) is a common neurodevelopmental disease, characterized by deficits in social communication, restricted and repetitive behaviours, and impaired fear memory processing. Severe gastrointestinal dysfunction and altered gut microbiome have been reported in ASD patients and animal models. Contactin associated protein-like 4 (CNTNAP4) has been suggested to be a novel risk gene, though its role in ASD remains unelucidated. METHODS: Cntnap4-/- mice were generated to explore its role in ASD-related behavioural abnormalities. Electrophysiological recording was employed to examine GABAergic transmission in the basolateral amygdala (BLA) and prefrontal cortex. RNA-sequencing was performed to assess underlying mechanisms. 16S rDNA analysis was performed to explore changes in faecal microbial composition. Male Cntnap4-/- mice were fed with Lactobacillus reuteri (L. reuteri) or faecal microbiota to evaluate the effects of microbiota supplementation on the impaired fear conditioning mediated by Cntnap4 deficiency. FINDINGS: Male Cntnap4-/- mice manifested deficiency in social behaviours and tone-cue fear conditioning. Notably, reduced GABAergic transmission and GABA receptor expression were found in the BLA but not the prefrontal cortex. In addition, gut Lactobacillus were less abundant in male Cntnap4-/- mice, and L. reuteri treatment or faecal microbiota transplantation rescued abnormal tone-cued fear memory and improved local GABAergic transmission in the BLA of male Cntnap4-/- mice. INTERPRETATION: Cntnap4 shapes GABAergic transmission of amygdala and fear conditioning, and microbial intervention represents a promising therapy in ASD intervention. FUNDING: National Natural Science Foundation of China, Science and Technology Planning Project of Guangzhou, Guangzhou Medical University, and China Postdoctoral Science Foundation.
Assuntos
Transtorno do Espectro Autista , Limosilactobacillus reuteri , Animais , Masculino , Camundongos , Tonsila do Cerebelo/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/microbiologia , Medo/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Memória/fisiologiaRESUMO
Oxidative stress damage plays a pivotal role in Parkinson's disease (PD) pathogenesis. Previously, we developed a blood brain barrier-penetrating peptide-based "Trojan Horse" strategy to deliver 4,4'-dimethoxychalcone (DMC) for PD therapy and revealed neuroprotective properties of DMC in a PD model; however, the underlying mechanisms remained unclear. Here, we report that DMC attenuated motor impairment, degeneration of DA neurons and α-synuclein aggregation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and exogenous human α-synuclein-induced PD mouse models. Mechanistically, DMC increased the expression of two critical intermediates in riboflavin metabolism: riboflavin kinase (RFK) and its metabolic product, flavin mononucleotide (FMN). We provide the first direct evidence that FMN ameliorated oxidative stress damage and dopaminergic neuron degeneration both in vitro and in vivo and that riboflavin metabolism was required for DMC-mediated neuroprotection. DMC-induced restoration of redox homeostasis was mediated via the activation of protein kinase Cθ (PKCθ) signaling. Together, our findings reveal that DMC may serve as a novel antioxidant in PD intervention and also define a novel mechanism that underlies its therapeutic activity.
Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Oxirredução , Doença de Parkinson/tratamento farmacológico , RiboflavinaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum), which is known in China as Liang-Mian-Zhen, is mainly distributed in southern China and is widely used in traditional Chinese medicine. It is traditionally used for treating stomach ache, toothache, rheumatic arthralgia, traumatic injury and venomous snake bites. Additional medical applications include the treatment of inflammations, various types of cancer, bacterial and viral infections, gastric and oral ulcers and liver damage. AIM OF THIS REVIEW: This paper aims to offer up-to-date information on the botany, traditional uses, phytochemistry, pharmacology and toxicity of Z. nitidum. This review also discussed the perspectives for possible future research on Z. nitidum. MATERIALS AND METHODS: A comprehensive review was carried out on studies about Z. nitidum conducted in the past 60 years by using different resources, including Flora of China, Pharmacopoeia of the People's Republic of China and academic databases. RESULTS: At present, more than 150 chemical constituents have been separated and identified from Z. nitidum, most of which include alkaloids. Biological activities, including anti-inflammation, analgesia, haemostasis, anticancer and antibacterial, were determined via in vitro and in vivo studies. The variations in the efficacy of Z. nitidum can be attributed to the biological activities of its natural products, especially alkaloids. Toxicity studies on Z. nitidum are relatively few, thus requiring further study. CONCLUSIONS: This article generalises the current research achievements related to Z. nitidum, which is an important medicinal material in China. Some traditional uses of Z. nitidum have been assessed by pharmacological studies. Unresolved problems remain, including molecular mechanisms underlying biological activities, pharmacokinetics, toxicology and therapeutic effect, which are still being studied and explored before Z. nitidum can be integrated into clinical medicine.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Compostos Fitoquímicos/farmacologia , Fitoterapia , Extratos Vegetais/farmacologia , Zanthoxylum , Animais , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/toxicidade , Etnobotânica , Etnofarmacologia , Humanos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Zanthoxylum/química , Zanthoxylum/toxicidadeRESUMO
Polypyrimidine tract-binding protein 1 (PTBP1) regulates numerous alternative splicing events during tumor progression and neurogenesis. Previously, PTBP1 downregulation was reported to convert astrocytes into functional neurons; however, how PTBP1 regulates astrocytic physiology remains unclear. In this study, we revealed that PTBP1 modulated glutamate uptake via ATP1a2, a member of Na+/K+-ATPases, and glutamate transporters in astrocytes. Ptbp1 knockdown altered mitochondrial function and energy metabolism, which involved PTBP1 regulating mitochondrial redox homeostasis via the succinate dehydrogenase (SDH)/Nrf2 pathway. The malfunction of glutamate transporters following Ptbp1 knockdown resulted in enhanced excitatory synaptic transmission in the cortex. Notably, we developed a biomimetic cationic triblock polypeptide system, i.e., polyethylene glycol44-polylysine30-polyleucine10 (PEG44-PLL30-PLLeu10) with astrocytic membrane coating to deliver Ptbp1 siRNA in vitro and in vivo, which approach allowed Ptbp1 siRNA to efficiently cross the blood-brain barrier and target astrocytes in the brain. Collectively, our findings suggest a framework whereby PTBP1 serves as a modulator in glutamate transport machinery, and indicate that biomimetic methodology is a promising route for in vivo siRNA delivery.