Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2220867120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279265

RESUMO

The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral nonsensory region. Here, we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear nonsensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated, but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane (TM), a flattened spiral prominence (SP), and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the nonsensory epithelium covering the outer border Claudius cells, outer sulcus root cells, and SP epithelial cells. Transcriptome analysis shows that ZBTB20 regulates genes encoding for TM proteins in the greater epithelial ridge, and those preferentially expressed in root cells and SP epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral nonsensory domain.


Assuntos
Cóclea , Células Ciliadas Auditivas , Animais , Camundongos , Cóclea/metabolismo , Células Ciliadas Auditivas/fisiologia , Audição/fisiologia , Mamíferos , Gânglio Espiral da Cóclea , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Hepatology ; 75(5): 1169-1180, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580885

RESUMO

BACKGROUND AND AIMS: Lipoprotein lipase (LPL) is responsible for the lipolytic processing of triglyceride-rich lipoproteins, the deficiency of which causes severe hypertriglyceridemia. Liver LPL expression is high in suckling rodents but relatively low at adulthood. However, the regulatory mechanism and functional significance of liver LPL expression are incompletely understood. We have established the zinc finger protein ZBTB20 as a critical factor for hepatic lipogenesis. Here, we evaluated the role of ZBTB20 in regulating liver Lpl gene transcription and plasma triglyceride metabolism. APPROACH AND RESULTS: Hepatocyte-specific inactivation of ZBTB20 in mice led to a remarkable increase in LPL expression at the mRNA and protein levels in adult liver, in which LPL protein was mainly localized onto sinusoidal epithelial cells and Kupffer cells. As a result, the LPL activity in postheparin plasma was substantially increased, and postprandial plasma triglyceride clearance was significantly enhanced, whereas plasma triglyceride levels were decreased. The dysregulated liver LPL expression and low plasma triglyceride levels in ZBTB20-deficient mice were normalized by inactivating hepatic LPL expression. ZBTB20 deficiency protected the mice against high-fat diet-induced hyperlipidemia without causing excessive triglyceride accumulation in the liver. Chromatin immunoprecipitation and gel-shift assay studies revealed that ZBTB20 binds to the LPL promoter in the liver. A luciferase reporter assay revealed that ZBTB20 inhibits the transcriptional activity of LPL promoter. The regulation of LPL expression by ZBTB20 is liver-specific under physiological conditions. CONCLUSIONS: Liver ZBTB20 serves as a key regulator of LPL expression and plasma triglyceride metabolism and could be a therapeutic target for hypertriglyceridemia.


Assuntos
Domínio BTB-POZ , Hipertrigliceridemia , Animais , Hepatócitos/metabolismo , Hipertrigliceridemia/etiologia , Hipertrigliceridemia/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Fígado/metabolismo , Camundongos , Fatores de Transcrição/metabolismo , Transcrição Gênica , Triglicerídeos/metabolismo , Dedos de Zinco
3.
Int J Obes (Lond) ; 46(5): 1068-1075, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152269

RESUMO

OBJECTIVES: Brown adipose tissue (BAT) plays a critical role in energy expenditure by uncoupling protein 1 (UCP1)-mediated thermogenesis and represents an important therapeutic target for metabolic diseases. Carbohydrate response element-binding protein (ChREBP) is a key transcription factor regulating de novo lipogenesis, and its activity is associated with UCP1 expression and thermogenesis in BAT. However, the exact physiological role of endogenous ChREBP in BAT thermogenesis remains unclear. METHODS: We used the Cre/LoxP system to generate ChREBP BAT-specific knockout mice, and examined their BAT thermogenesis under acute cold exposure and long-term cold acclimation. Gene expression was analyzed at the mRNA and protein levels, and lipogenesis was examined by 3H-H2O incorporation assay. RESULTS: The mice lacking ChREBP specifically in BAT displayed a significant decrease in the expression levels of lipogenic genes and the activity of de novo lipogenesis in BAT after cold exposure, with UCP1 expression decreased under thermoneutral conditions or after acute cold exposure but not chronic cold acclimation. Unexpectedly, BAT-specific ChREBP deletion did not significantly affect body temperature as well as local temperature or morphology of BAT after acute cold exposure or chronic cold acclimation. Of note, ChREBP deletion mildly aggravated glucose intolerance induced by a high-fat diet. CONCLUSIONS: Our work indicates that ChREBP regulates de novo lipogenesis in BAT and glucose tolerance, but is not required for non-shivering thermogenesis by BAT under acute or long-term cold exposure.


Assuntos
Tecido Adiposo Marrom , Lipogênese , Tecido Adiposo Marrom/metabolismo , Animais , Temperatura Baixa , Metabolismo Energético/fisiologia , Camundongos , Camundongos Knockout , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
4.
Nat Commun ; 14(1): 7934, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040719

RESUMO

Arginase, a manganese (Mn)-dependent enzyme, is indispensable for urea generation and ammonia disposal in the liver. The potential role of fructose in Mn and ammonia metabolism is undefined. Here we demonstrate that fructose overconsumption impairs hepatic Mn homeostasis and ammonia disposal in male mice. Fructose overexposure reduces liver Mn content as well as its activity of arginase and Mn-SOD, and impairs the clearance of blood ammonia under liver dysfunction. Mechanistically, fructose activates the Mn exporter Slc30a10 gene transcription in the liver in a ChREBP-dependent manner. Hepatic overexpression of Slc30a10 can mimic the effect of fructose on liver Mn content and ammonia disposal. Hepatocyte-specific deletion of Slc30a10 or ChREBP increases liver Mn contents and arginase activity, and abolishes their responsiveness to fructose. Collectively, our data establish a role of fructose in hepatic Mn and ammonia metabolism through ChREBP/Slc30a10 pathway, and postulate fructose dietary restriction for the prevention and treatment of hyperammonemia.


Assuntos
Frutose , Manganês , Masculino , Camundongos , Animais , Manganês/toxicidade , Manganês/metabolismo , Frutose/metabolismo , Amônia/metabolismo , Arginase/genética , Arginase/metabolismo , Fígado/metabolismo , Fatores de Transcrição/metabolismo , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA