Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 458: 131879, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336107

RESUMO

Silver (Ag) can change the structure of the gut microbiota (GM), but how such change may affect host health is unknown. In this study, mice were exposed to silver acetate daily for 120 days. During this period, Ag accumulation in the liver was measured, its effects on GM structure were analyzed, and potential metabolic changes in liver and serum were examined. Although Ag accumulation remained unchanged in most treatments, the ratio of Firmicutes to Bacteroidetes at the phylum level increased and changes in the relative abundance of 33 genera were detected, suggesting that Ag altered the energy metabolism of mice via changes in the gut GM. In serum and liver, 34 and 72 differentially expressed metabolites were identified, respectively. The KEGG pathways thus enriched mainly included those involving the metabolism of amino acids, organic acids, lipids, and purine. Strong correlations were found between 33 % of the microorganisms with altered relative abundances and 46 % of the differentially expressed metabolites. The resulting clusters yielded two communities responsible for host inflammation and energy metabolism. Overall, these results demonstrate potential effects of Ag on the host, by changing its GM structure, and the need to consider them when evaluating the health risk of Ag.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Firmicutes , Metabolismo dos Lipídeos , Bacteroidetes , Fígado/metabolismo
2.
Int J Ophthalmol ; 14(12): 1820-1827, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926194

RESUMO

AIM: To determine the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells (hUCMSCs) on the expression of vascular endothelial growth factor A (VEGF-A) in human retinal vascular endothelial cells (HRECs). METHODS: Exosomes were isolated from hUCMSCs using cryogenic ultracentrifugation and characterized by transmission electron microscopy, Western blotting and nanoparticle tracking analysis. HRECs were randomly divided into a normal control group (group A), a high glucose model group (group B), a high glucose group with 25 µg/mL (group C), 50 µg/mL (group D), and 100 µg/mL exosomes (group E). Twenty-four hours after coculture, the cell proliferation rate was detected using flow cytometry, and the VEGF-A level was detected using immunofluorescence. After coculture 8, 16, and 24h, the expression levels of VEGF-A in each group were detected using PCR and Western blots. RESULTS: The characteristic morphology (membrane structured vesicles) and size (diameter between 50 and 200 nm) were observed under transmission electron microscopy. The average diameter of 122.7 nm was discovered by nanoparticle tracking analysis (NTA). The exosomal markers CD9, CD63, and HSP70 were strongly detected. The proliferation rate of the cells in group B increased after 24h of coculture. Immunofluorescence analyses revealed that the upregulation of VEGF-A expression in HRECs stimulated by high glucose could be downregulated by cocultured hUCMSC-derived exosomes (F=39.03, P<0.01). The upregulation of VEGF-A protein (group C: F=7.96; group D: F=17.29; group E: F=11.89; 8h: F=9.45; 16h: F=12.86; 24h: F=42.28, P<0.05) and mRNA (group C: F=4.137; group D: F=13.64; group E: F=22.19; 8h: F=7.253; 16h: F=16.98; 24h: F=22.62, P<0.05) in HRECs stimulated by high glucose was downregulated by cocultured hUCMSC-derived exosomes (P<0.05). CONCLUSION: hUCMSC-derived exosomes downregulate VEGF-A expression in HRECs stimulated by high glucose in time and concentration dependent manner.

3.
Int J Ophthalmol ; 14(10): 1508-1517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34667726

RESUMO

AIM: To investigate the protective effect of human umbilical cord mesenchymal stem cells (hUCMSCs) modified by the LIF gene on the retinal function of diabetic model rats and preliminarily explore the possible mechanism. METHODS: A stably transfected cell line of hUCMSCs overexpressing leukemia inhibitory factor (LIF) was constructed. Overexpression was verified by fluorescent quantitative polymerase chain reaction (qPCR). Forty-eight adult Sprague-Dawley rats were randomly divided into a normal control group (group A), streptozotocin-induced diabetic control group (group B), diabetic rats at 3mo injected with empty vector-transfected hUCMSCs (group C) or injected with LIF-hUCMSCs (group D). Four weeks after the intravitreal injection, analyses in all groups included retinal function using flash electroretinogram (F-ERG), retinal blood vessel examination of retinal flat mounts perfused with fluorescein isothiocyanate-dextran (FITC-dextran), and retinal structure examination of sections using hematoxylin and eosin staining. Expression levels of adiponectin (APN), high-sensitivity C-reactive protein (hs-CRP), and neurotrophin-4 (NT-4) in each group was detected using immunohistochemistry, PCR, Western blotting, and ELISA, respectively. RESULTS: A stable transgenic cell line of LIF-hUCMSCs was constructed. F-ERG and FITC-dextran examinations revealed no abnormalities of retinal structure and function in group A, severe damage of the retinal blood vessels and function in group B, and improved retinal structure and function in group C and especially group D. qPCR, ELISA, and Western blot analyses revealed progressively higher APN and NT-4 expression levels in groups B, C, and D than in group A. hs-CRP expression was significantly higher in group B than in groups A, C, and D, and was significantly higher in group C than in group D (P<0.05). CONCLUSION: LIF-hUCMSCs protect the retina of diabetic rats by upregulating APN and NT-4 expression and downregulating hs-CRP expression in the retina.

4.
Int J Ophthalmol ; 11(4): 559-566, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675371

RESUMO

AIM: To observe the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells (hUCMSCs) on the expression of vascular endothelial growth factor-A (VEGF-A) in blue light injured human retinal pigment epithelial (RPE) cells and laser-induced choroidal neovascularization (CNV) in rats. METHODS: Exosomes were isolated from hUCMSCs and characterized by transmission electron microscope and Western blot. MSCs-derived exosomes were cultured with RPE cells exposed to blue light. The mRNA and protein expression of VEGF-A were determined by real time-polymerase chain reaction (PCR) and Western blot, respectively. Immunofluorescence assay was used for the detection of the expression level of VEGF-A. We injected different doses of MSCs-derived exosomes intravitreally to observe and compare their effects in a mouse model of laser-induced retinal injury. The histological structure of CNV in rats was inspected by hematoxylin-eosin (HE) staining and fundus fluorescein angiography. The expression of VEGF-A was detected by immunohistochemistry. RESULTS: Exosomes exhibited the typical characteristic morphology (cup-shaped) and size (diameter between 50 and 150 nm). The exosomes marker, CD63, and hUCMSCs marker, CD90, showed a robust presence. In vitro, MSCs-derived exosomes downregulated the mRNA(Exo-L: t=6.485, 7.959, 9.286; Exo-M: t=7.517, 10.170, 13.413; Exo-H: t=10.317, 12.234, 14.592, P<0.05) and protein (Exo-L: t=2.945, 4.477, 6.657; Exo-M: t=4.713, 6.421, 8.836; Exo-H: t=6.539, 12.194, 12.783; P<0.05) expression of VEGF-A in RPE cells after blue light stimulation. In vivo, we found that the MSCs-derived exosomes reduced damage, distinctly downregulated VEGF-A (Exo-H: t=0.957, 1.382; P<0.05), and gradually improved the histological structures of CNV for a better visual function (Exo-L: 0.346, Exo-M: 3.382, Exo-H: 8.571; P<0.05). CONCLUSION: MSCs-derived exosomes ameliorate blue light stimulation in RPE cells and laser-induced retinal injury via downregulation of VEGF-A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA