Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.129
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 599(7884): 320-324, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707294

RESUMO

The Dispatched protein, which is related to the NPC1 and PTCH1 cholesterol transporters1,2 and to H+-driven transporters of the RND family3,4, enables tissue-patterning activity of the lipid-modified Hedgehog protein by releasing it from tightly -localized sites of embryonic expression5-10. Here we determine a cryo-electron microscopy structure of the mouse protein Dispatched homologue 1 (DISP1), revealing three Na+ ions coordinated within a channel that traverses its transmembrane domain. We find that the rate of Hedgehog export is dependent on the Na+ gradient across the plasma membrane. The transmembrane channel and Na+ binding are disrupted in DISP1-NNN, a variant with asparagine substitutions for three intramembrane aspartate residues that each coordinate and neutralize the charge of one of the three Na+ ions. DISP1-NNN and variants that disrupt single Na+ sites retain binding to, but are impaired in export of the lipid-modified Hedgehog protein to the SCUBE2 acceptor. Interaction of the amino-terminal signalling domain of the Sonic hedgehog protein (ShhN) with DISP1 occurs via an extensive buried surface area and contacts with an extended furin-cleaved DISP1 arm. Variability analysis reveals that ShhN binding is restricted to one extreme of a continuous series of DISP1 conformations. The bound and unbound DISP1 conformations display distinct Na+-site occupancies, which suggests a mechanism by which transmembrane Na+ flux may power extraction of the lipid-linked Hedgehog signal from the membrane. Na+-coordinating residues in DISP1 are conserved in PTCH1 and other metazoan RND family members, suggesting that Na+ flux powers their conformationally driven activities.


Assuntos
Microscopia Crioeletrônica , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Sódio/metabolismo , Animais , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas Hedgehog/ultraestrutura , Lipídeos de Membrana/química , Lipídeos de Membrana/isolamento & purificação , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Camundongos , Modelos Moleculares , Mutação
2.
Proc Natl Acad Sci U S A ; 120(37): e2305380120, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669372

RESUMO

Proactively programming materials toward target nonlinear mechanical behaviors is crucial to realize customizable functions for advanced devices and systems, which arouses persistent explorations for rapid and efficient inverse design strategies. Herein, we propose a "mechanical Fourier transform" strategy to program mechanical behaviors of materials by mimicking the concept of Fourier transform. In this strategy, an arbitrary target force-displacement curve is decomposed into multiple cosine curves and a constant curve, each of which is realized by a rationally designed multistable module in an array-structured metamaterial. Various target curves with distinct shapes can be rapidly programmed and reprogrammed through only amplitude modulation on the modules. Two exemplary metamaterials are demonstrated to validate the strategy with a macroscale prototype based on magnet lattice and a microscale prototype based on an etched silicon wafer. This strategy applies to a variety of scales, constituents, and structures, and paves a way for the property programming of materials.

3.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38189536

RESUMO

Accurate subgenome phasing is crucial for understanding the origin, evolution and adaptive potential of polyploid genomes. SubPhaser and WGDI software are two common methodologies for subgenome phasing in allopolyploids, particularly in scenarios lacking known diploid progenitors. Triggered by a recent debate over the subgenomic origins of the cultivated octoploid strawberry, we examined four well-documented complex allopolyploidy cases as benchmarks, to evaluate and compare the accuracy of the two software. Our analysis demonstrates that the subgenomic structure phased by both software is in line with prior research, effectively tracing complex allopolyploid evolutionary trajectories despite the limitations of each software. Furthermore, using these validated methodologies, we revisited the controversial issue regarding the progenitors of the octoploid strawberry. The results of both methodologies reaffirm Fragaria vesca and Fragaria iinumae as progenitors of the octoploid strawberry. Finally, we propose recommendations for enhancing the accuracy of subgenome phasing in future studies, recognizing the potential of integrated tools for advanced complex allopolyploidy research and offering a new roadmap for robust subgenome-based phylogenetic analysis.


Assuntos
Benchmarking , Fragaria , Filogenia , Fragaria/genética , Poliploidia , Software
4.
PLoS Pathog ; 19(5): e1011123, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196033

RESUMO

SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteólise , Replicação Viral , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
5.
FASEB J ; 38(6): e23559, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38502020

RESUMO

Articular cartilage injury is one of the most common diseases in orthopedic clinics. Following an articular cartilage injury, an inability to resist vascular invasion can result in cartilage calcification by newly formed blood vessels. This process ultimately leads to the loss of joint function, significantly impacting the patient's quality of life. As a result, developing anti-angiogenic methods to repair damaged cartilage has become a popular research topic. Despite this, tissue engineering, as an anti-angiogenic strategy in cartilage injury repair, has not yet been adequately investigated. This exhaustive literature review mainly focused on the process and mechanism of vascular invasion in articular cartilage injury repair and summarized the major regulatory factors and signaling pathways affecting angiogenesis in the process of cartilage injury. We aimed to discuss several potential methods for engineering cartilage repair with anti-angiogenic strategies. Three anti-angiogenic tissue engineering methods were identified, including administering angiogenesis inhibitors, applying scaffolds to manage angiogenesis, and utilizing in vitro bioreactors to enhance the therapeutic properties of cultured chondrocytes. The advantages and disadvantages of each strategy were also analyzed. By exploring these anti-angiogenic tissue engineering methods, we hope to provide guidance for researchers in related fields for future research and development in cartilage repair.


Assuntos
Cartilagem Articular , Qualidade de Vida , Humanos , Imunoterapia , Inibidores da Angiogênese , Calcificação Fisiológica
6.
J Immunol ; 211(4): 648-657, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37405700

RESUMO

Drugs are needed to protect against the neutrophil-derived histones responsible for endothelial injury in acute inflammatory conditions such as trauma and sepsis. Heparin and other polyanions can neutralize histones but challenges with dosing or side effects such as bleeding limit clinical application. In this study, we demonstrate that suramin, a widely available polyanionic drug, completely neutralizes the toxic effects of individual histones, but not citrullinated histones from neutrophil extracellular traps. The sulfate groups on suramin form stable electrostatic interactions with hydrogen bonds in the histone octamer with a dissociation constant of 250 nM. In cultured endothelial cells (Ea.Hy926), histone-induced thrombin generation was significantly decreased by suramin. In isolated murine blood vessels, suramin abolished aberrant endothelial cell calcium signals and rescued impaired endothelial-dependent vasodilation caused by histones. Suramin significantly decreased pulmonary endothelial cell ICAM-1 expression and neutrophil recruitment caused by infusion of sublethal doses of histones in vivo. Suramin also prevented histone-induced lung endothelial cell cytotoxicity in vitro and lung edema, intra-alveolar hemorrhage, and mortality in mice receiving a lethal dose of histones. Protection of vascular endothelial function from histone-induced damage is a novel mechanism of action for suramin with therapeutic implications for conditions characterized by elevated histone levels.


Assuntos
Histonas , Suramina , Camundongos , Animais , Histonas/metabolismo , Suramina/farmacologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Hemorragia
7.
Mol Cell ; 67(2): 322-333.e6, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28689658

RESUMO

The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly.


Assuntos
Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/ultraestrutura , Modelos Moleculares , Chaperonas Moleculares/ultraestrutura , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Proto-Oncogênicas/ultraestrutura , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura , Transfecção
8.
Genomics ; 116(5): 110918, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147333

RESUMO

Ischemia-reperfusion injury (IRI) is a cumulation of pathophysiological processes that involves cell and organelle damage upon blood flow constraint and subsequent restoration. However, studies on overall immune infiltration and ferroptosis in liver ischemia-reperfusion injury (LIRI) are limited. This study explored immune cell infiltration and ferroptosis in LIRI using bioinformatics and experimental validation. The GSE151648 dataset, including 40 matched pairs of pre- and post- transplant liver samples was downloaded for bioinformatic analysis. Eleven hub genes were identified by overlapping differentially expressed genes (DEGs), iron genes, and genes identified through weighted gene co-expression network analysis (WGCNA). Subsequently, the pathway enrichment, transcription factor-target, microRNA-mRNA and protein-protein interaction networks were investigated. The diagnostic model was established by logistic regression, which was validated in the GSE23649 and GSE100155 datasets and verified using cytological experiments. Moreover, several drugs targeting these genes were found in DrugBank, providing a more effective treatment for LIRI. In addition, the expression of 11 hub genes was validated using quantitative real-time polymerase chain reaction (qRT-PCR) in liver transplantation samples and animal models. The expression of the 11 hub genes increased in LIRI compared with the control. Five genes were significantly enriched in six biological process terms, six genes showed high enrichment for LIRI-related signaling pathways. There were 56 relevant transcriptional factors and two central modules in the protein-protein interaction network. Further immune infiltration analysis indicated that immune cells including neutrophils and natural killer cells were differentially accumulated in the pre- and post-transplant groups, and this was accompanied by changes in immune-related factors. Finally, 10 targeted drugs were screened. Through bioinformatics and further experimental verification, we identified hub genes related to ferroptosis that could be used as potential targets to alleviate LIRI.

9.
J Am Chem Soc ; 146(11): 7640-7648, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466380

RESUMO

The cell membrane exhibits a remarkable complexity of lipids and proteins that dynamically segregate into distinct domains to coordinate various cellular functions. The ability to manipulate the partitioning of specific membrane proteins without involving genetic modification is essential for decoding various cellular processes but highly challenging. In this work, by conjugating cholesterols or tocopherols at the three bottom vertices of the DNA tetrahedron, we develop two sets of nanodevices for the selective targeting of lipid-order (Lo) and lipid-disorder (Ld) domains on the live cell membrane. By incorporation of protein-recognition ligands, such as aptamers or antibodies, through toehold-mediated strand displacement, these DNA nanodevices enable dynamic translocation of target proteins between these two domains. We first used PTK7 as a protein model and demonstrated, for the first time, that the accumulation of PTK7 to the Lo domains could promote tumor cell migration, while sequestering it in the Ld domains would inhibit the movement of the cells. Next, based on their modular nature, these DNA nanodevices were extended to regulate the process of T cell activation through manipulating the translocation of CD45 between the Lo and the Ld domains. Thus, our work is expected to provide deep insight into the study of membrane structure and molecular interactions within diverse cell signaling processes.


Assuntos
DNA , Proteínas de Membrana , Membrana Celular/química , DNA/química , Proteínas de Membrana/análise , Lipídeos/química , Bicamadas Lipídicas/química , Microdomínios da Membrana/química
10.
Cancer Sci ; 115(3): 777-790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228495

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a highly malignant and aggressive cancer whose incidence and mortality continue to increase, whereas its prognosis remains dismal. Tumor-associated macrophages (TAMs) promote malignant progression and immune microenvironment remodeling through direct contact and secreted mediators. Targeting TAMs has emerged as a promising strategy for ICC treatment. Here, we revealed the potential regulatory function of immune responsive gene 1 (IRG1) in macrophage polarization. We found that IRG1 expression remained at a low level in M2 macrophages. IRG1 overexpression can restrain macrophages from polarizing to the M2 type, which results in inhibition of the proliferation, invasion, and migration of ICC, whereas IRG1 knockdown exerts the opposite effects. Mechanistically, IRG1 inhibited the tumor-promoting chemokine CCL18 and thus suppressed ICC progression by regulating STAT3 phosphorylation. The intervention of IRG1 expression in TAMs may serve as a potential therapeutic target for delaying ICC progression.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/patologia , Macrófagos/metabolismo , Prognóstico , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Microambiente Tumoral , Quimiocinas CC/metabolismo , Fator de Transcrição STAT3/metabolismo
11.
Am J Epidemiol ; 193(3): 426-453, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37851862

RESUMO

Uses of real-world data in drug safety and effectiveness studies are often challenged by various sources of bias. We undertook a systematic search of the published literature through September 2020 to evaluate the state of use and utility of negative controls to address bias in pharmacoepidemiologic studies. Two reviewers independently evaluated study eligibility and abstracted data. Our search identified 184 eligible studies for inclusion. Cohort studies (115, 63%) and administrative data (114, 62%) were, respectively, the most common study design and data type used. Most studies used negative control outcomes (91, 50%), and for most studies the target source of bias was unmeasured confounding (93, 51%). We identified 4 utility domains of negative controls: 1) bias detection (149, 81%), 2) bias correction (16, 9%), 3) P-value calibration (8, 4%), and 4) performance assessment of different methods used in drug safety studies (31, 17%). The most popular methodologies used were the 95% confidence interval and P-value calibration. In addition, we identified 2 reference sets with structured steps to check the causality assumption of the negative control. While negative controls are powerful tools in bias detection, we found many studies lacked checking the underlying assumptions. This article is part of a Special Collection on Pharmacoepidemiology.


Assuntos
Farmacoepidemiologia , Humanos , Viés , Farmacoepidemiologia/métodos
12.
Am J Epidemiol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317693

RESUMO

To study the risk of spontaneous abortion (SAB) or termination using healthcare utilization databases, algorithms to estimate the gestational age (GA) are needed. Using Medicaid data, we developed a hierarchical algorithm to classify pregnancy outcomes. We identified the subset of potential SAB and termination cases, and abstracted the GA from linked electronic medical records (gold standard). We developed three approaches: (1) assign median GA for SAB and termination cases in the US; (2) draw a random GA from the population distributions; (3) estimate GA based on regression models. Algorithm performance was assessed based on the proportion of pregnancies with estimated GA within 1-4 weeks of the gold standard, the mean squared error (MSE) and the R-squared. Approach 1 and Approach 3 had similar performance, though approach 3 using random forest models with variables selected via the Boruta algorithm had better MSE and R-squared. For SAB, 58.0% of pregnancies were correctly classified within 2 weeks of the gold standard (MSE: 8.7, R-squared: 0.09). For termination, the proportions were 66.3% (MSE: 11.7; R-squared: 0.35). SABs and terminations can be studied in healthcare utilization data with careful implementation of validated algorithms though higher level of GA misclassification is expected compared to live births.

13.
Gastroenterology ; 164(7): 1232-1247, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36842710

RESUMO

BACKGROUND & AIMS: Although small patient subsets benefit from current targeted strategies or immunotherapy, gemcitabine remains the first-line drug for pancreatic cancer (PC) treatment. However, gemcitabine resistance is widespread and compromises long-term survival. Here, we identified ubiquitin-conjugating enzyme E2T (UBE2T) as a potential therapeutic target to combat gemcitabine resistance in PC. METHODS: Proteomics and metabolomics were combined to examine the effect of UBE2T on pyrimidine metabolism remodeling. Spontaneous PC mice (LSL-KrasG12D/+, LSL-Trp53R172H/+, Pdx1-Cre; KPC) with Ube2t-conditional knockout, organoids, and large-scale clinical samples were used to determine the effect of UBE2T on gemcitabine efficacy. Organoids, patient-derived xenografts (PDX), and KPC mice were used to examine the efficacy of the combination of a UBE2T inhibitor and gemcitabine. RESULTS: Spontaneous PC mice with Ube2t deletion had a marked survival advantage after gemcitabine treatment, and UBE2T levels were positively correlated with gemcitabine resistance in clinical patients. Mechanistically, UBE2T catalyzes ring finger protein 1 (RING1)-mediated ubiquitination of p53 and relieves the transcriptional repression of ribonucleotide reductase subunits M1 and M2, resulting in unrestrained pyrimidine biosynthesis and alleviation of replication stress. Additionally, high-throughput compound library screening using organoids identified pentagalloylglucose (PGG) as a potent UBE2T inhibitor and gemcitabine sensitizer. The combination of gemcitabine and PGG diminished tumor growth in PDX models and prolonged long-term survival in spontaneous PC mice. CONCLUSIONS: Collectively, UBE2T-mediated p53 degradation confers PC gemcitabine resistance by promoting pyrimidine biosynthesis and alleviating replication stress. This study offers an opportunity to improve PC survival by targeting UBE2T and develop a promising gemcitabine sensitizer in clinical translation setting.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Modelos Animais de Doenças , Linhagem Celular Tumoral , Neoplasias Pancreáticas
14.
Small ; 20(32): e2312241, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38506575

RESUMO

Solar interfacial evaporation technology has the advantages of environmentally conscious and sustainable benefits. Recent research on light absorption, water transportation, and thermal management has improved the evaporation performance of solar interfacial evaporators. However, many studies on photothermal materials and structures only aim to improve performance, neglecting explanations for heat and mass transfer coupling or providing evidence for performance enhancement. Numerical simulation can simulate the diffusion paths and heat and water transfer processes to understand the thermal and mass transfer mechanism, thereby better achieving the design of efficient solar interfacial evaporators. Therefore, this review summarizes the latest exciting findings and tremendous advances in numerical simulation for solar interfacial evaporation. First, it presents a macroscopic summary of the application of simulation in temperature distribution, salt concentration distribution, and vapor flux distribution during evaporation. Second, the utilization of simulation in the microscopic is summed up, specifically focusing on the movement of water molecules and the mechanisms of light responses during evaporation. Finally, all simulation methods have the goal of validating the physical processes in solar interfacial evaporation. It is hoped that the use of numerical simulation can provide theoretical guidance and technical support for the application of solar-driven interfacial evaporation technology.

15.
Opt Express ; 32(7): 11801-11817, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571019

RESUMO

A full-quantum approach is used to study the quantum nonlinear properties of a compound Michelson-Sagnac interferometer optomechanical system. By deriving the effective Hamiltonian, we find that the reduced system exhibits a Kerr nonlinear term with a complex coefficient, entirely induced by the dissipative and dispersive couplings. Unexpectedly, the nonlinearities resulting from the dissipative coupling possess non-Hermitian Hamiltonian-like properties preserving the quantum nature of the dispersive coupling beyond the traditional system dissipation. This protective mechanism allows the system to exhibit strong quantum nonlinear effects when the detuning (the compound cavity detuning Δc and the auxiliary cavity detuning Δe) and the tunneling coupling strength (J) of two cavities satisfy the relation J2 = ΔcΔe. Moreover, the additive effects of dispersive and dissipative couplings can produce strong anti-bunching effects, which exist in both strong and weak coupling conditions. Our work may provide a new way to study and produce strong quantum nonlinear effects in dissipatively coupled optomechanical systems.

16.
Chemistry ; 30(30): e202400157, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38520385

RESUMO

Up to now, the mainstream adoption of renewable energy has brought about substantial transformations in the electricity and energy sector. This shift has garnered considerable attention within the scientific community. Supercapacitors, known for their exceptional performance metrics like good charge/discharge capability, strong power density, as well as extended cycle longevity, have gained widespread traction across various sectors, including transportation and aviation. Metal-organic frameworks (MOFs) with unique traits including adaptable structure, highly customizable synthetic methods, and high specific surface area, have emerged as strong candidates for electrode materials. For enhancing the performance, MOFs are commonly compounded with other conducting materials to increase capacitance. This paper provides a detailed analysis of various common preparation strategies and characteristics of MOFs. It summarizes the recent application of MOFs and their derivatives as supercapacitor electrodes alongside other carbon materials, metal compounds, and conductive polymers. Additionally, the challenges encountered by MOFs in the realm of supercapacitor applications are thoroughly discussed. Compared to previous reviews, the content of this paper is more comprehensive, offering readers a deeper understanding of the diverse applications of MOFs. Furthermore, it provides valuable suggestions and guidance for future progress and development in the field of MOFs.

17.
Langmuir ; 40(31): 16145-16150, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39054779

RESUMO

As a common pathological hallmark, protein aggregation into amyloids is a highly complicated phenomenon, attracting extensive research interest for elucidating its structural details and formation mechanisms. Membrane deposition and disulfide-driven protein misfolding play critical roles in amyloid-type aggregation, yet the underlying molecular process remains unclear. Here, we employed sum frequency generation (SFG) vibrational spectroscopy to comprehensively investigate the remodeling process of lysozyme, as the model protein, into amyloid-type aggregates at the cell membrane interface. It was discovered that disulfide reduction concurrently induced the transition of membrane-bound lysozyme from predominantly α-helical to antiparallel ß-sheet structures, under a mode switch of membrane interaction from electrostatic to hydrophobic, and subsequent oligomeric aggregation. These findings shed light on the systematic understanding of dynamic molecular mechanisms underlying membrane-interactive amyloid oligomer formation.


Assuntos
Amiloide , Dissulfetos , Interações Hidrofóbicas e Hidrofílicas , Muramidase , Dissulfetos/química , Muramidase/química , Muramidase/metabolismo , Amiloide/química , Agregados Proteicos , Animais , Eletricidade Estática
18.
Langmuir ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316696

RESUMO

Silica or calcium fluoride (CaF2) substrate-supported poly(methyl methacrylate) (PMMA) thin films as insulating layers are commonly used in photoelectric/photovoltaic devices to improve the efficiency or stability of these devices. However, a comparative investigation of molecular structures at buried PMMA/silica and PMMA/CaF2 interfaces under thermal stimuli remains unexplored. In this study, we qualitatively and quantitatively revealed different molecular orderings and orientations of PMMA at two interfaces before and after annealing using sum frequency generation (SFG) vibrational spectroscopy. SFG vibrations were carefully assigned by using various deuterated PMMAs. SFG results indicated that, at the buried PMMA/silica interface, the side OCH3 groups were prone to lie down before annealing and tended to stand up after annealing. In contrast, the case was the opposite at the buried PMMA/CaF2 interface. The relative hydrophobicity/hydrophilicity of the two substrates and the developed hydrogen bonds upon annealing at the buried PMMA/silica interface, which is absent at the CaF2 surface, are believed to be the driving forces for different interfacial molecular structures. This study benefits the molecular-level understanding of the interfacial local structural relaxation of polymers at buried interfaces and the rational design of photoelectric/photovoltaic devices from the molecular level.

19.
Liver Int ; 44(7): 1668-1679, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554044

RESUMO

BACKGROUND: Liver ischaemia/reperfusion (I/R) injury, which is an inevitable clinical problem of liver resection, liver transplantation and haemorrhagic shock. Fibroblast growth factor 21 (FGF21) was intimately coupled with multiple metabolic processes and proved to protect against apoptosis and inflammatory response in hepatocytes during hepatic I/R injury. However, the regulatory mechanisms of FGF21 in hepatic I/R injury remains unknown. Therefore, we hypothesize that FGF21 protects hepatic tissues from I/R injury. METHODS: Blood samples were available from haemangiomas patients undergoing hepatectomy and murine liver I/R model and used to further evaluate the serum levels of FGF21 both in humans and mice. We further explored the regulatory mechanisms of FGF21 in murine liver I/R model by using FGF21-knockout mice (FGF21-KO mice) and FGF21-overexpression transgenic mice (FGF21-OE mice) fed a high-fat or ketogenic diet. RESULTS: Our results show that the circulating levels of FGF21 were robustly decreased after liver I/R in both humans and mice. Silencing FGF21 expression with FGF21-KO mice aggravates liver injury at 6 h after 75 min of partial liver ischaemia, while FGF21-OE mice display alleviated hepatic I/R injury and inflammatory response. Compared with chow diet mice, exogenous FGF21 decreases the levels of aminotransferase, histological changes, apoptosis and inflammatory response in hepatic I/R injury treatment mice with a high-fat diet. Meanwhile, ketogenic diet mice are not sensitive to hepatic I/R injury. CONCLUSIONS: The circulating contents of FGF21 are decreased during liver warm I/R injury and exogenous FGF21 exerts hepatoprotective effects on hepatic I/R injury. Thus, FGF21 regulates hepatic I/R injury and may be a key therapeutic target.


Assuntos
Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos , Fígado , Camundongos Knockout , Traumatismo por Reperfusão , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Animais , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Humanos , Camundongos , Fígado/patologia , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Apoptose , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Camundongos Transgênicos , Feminino , Hepatectomia
20.
Neuroendocrinology ; 114(8): 786-798, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38815558

RESUMO

INTRODUCTION: Dimenhydrinate and scopolamine are frequently used drugs, but they cause drowsiness and performance decrement. Therefore, it is crucial to find peripheral targets and develop new drugs without central side effects. This study aimed to investigate the anti-motion sickness action and inner ear-related mechanisms of atrial natriuretic peptide (ANP). METHODS: Endolymph volume in the inner ear was measured with magnetic resonance imaging and expression of AQP2 and p-AQP2 was detected with Western blot analysis and immunofluorescence method. RESULTS: Both rotational stimulus and intraperitoneal arginine vasopressin (AVP) injection induced conditioned taste aversion (CTA) to 0.15% sodium saccharin solution and an increase in the endolymph volume of the inner ear. However, intraperitoneal injection of ANP effectively alleviated the CTA behaviour and reduced the increase in the endolymph volume after rotational stimulus. Intratympanic injection of ANP also inhibited rotational stimulus-induced CTA behaviour, but anantin peptide, an inhibitor of ANP receptor A (NPR-A), blocked this inhibitory effect of ANP. Both rotational stimulus and intraperitoneal AVP injection increased the expression of AQP2 and p-AQP2 in the inner ear of rats, but these increases were blunted by ANP injection. In in vitro experiments, ANP addition decreased AVP-induced increases in the expression and phosphorylation of AQP2 in cultured endolymphatic sac epithelial cells. CONCLUSION: Therefore, the present study suggests that ANP could alleviate motion sickness through regulating endolymph volume of the inner ear increased by AVP, and this action of ANP is potentially mediated by activating NPR-A and antagonising the increasing effect of AVP on AQP2 expression and phosphorylation.


Assuntos
Arginina Vasopressina , Fator Natriurético Atrial , Endolinfa , Enjoo devido ao Movimento , Animais , Fator Natriurético Atrial/farmacologia , Fator Natriurético Atrial/metabolismo , Fator Natriurético Atrial/administração & dosagem , Arginina Vasopressina/farmacologia , Arginina Vasopressina/administração & dosagem , Arginina Vasopressina/metabolismo , Enjoo devido ao Movimento/tratamento farmacológico , Masculino , Endolinfa/efeitos dos fármacos , Endolinfa/metabolismo , Orelha Interna/efeitos dos fármacos , Ratos Sprague-Dawley , Aquaporina 2/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA