Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Sci Technol ; 50(4): 1670-80, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26783947

RESUMO

Since the isolation of soil organic matter in 1786, tens of thousands of publications have searched for its structure. Nuclear magnetic resonance (NMR) spectroscopy has played a critical role in defining soil organic matter but traditional approaches remove key information such as the distribution of components at the soil-water interface and conformational information. Here a novel form of NMR with capabilities to study all physical phases termed Comprehensive Multiphase NMR, is applied to analyze soil in its natural swollen-state. The key structural components in soil organic matter are identified to be largely composed of macromolecular inputs from degrading biomass. Polar lipid heads and carbohydrates dominate the soil-water interface while lignin and microbes are arranged in a more hydrophobic interior. Lignin domains cannot be penetrated by aqueous solvents even at extreme pH indicating they are the most hydrophobic environment in soil and are ideal for sequestering hydrophobic contaminants. Here, for the first time, a complete range of physical states of a whole soil can be studied. This provides a more detailed understanding of soil organic matter at the molecular level itself key to develop the most efficient soil remediation and agricultural techniques, and better predict carbon sequestration and climate change.


Assuntos
Biomassa , Solo/química , Água , Agricultura/métodos , Carboidratos , Interações Hidrofóbicas e Hidrofílicas , Lignina/análise , Lipídeos , Espectroscopia de Ressonância Magnética/métodos
2.
Environ Sci Technol ; 49(24): 13983-91, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26579583

RESUMO

Comprehensive multiphase NMR is a novel NMR technique that permits all components (solutions, gels, and solids) to be studied in unaltered natural samples. In this study a wide range of CMP-NMR interaction and editing-based experiments are combined to follow contaminants (pentafluorophenol (PFP) and perfluorooctanoic acid (PFOA)) from the solution state (after a spill) through the gel-state and finally into the true solid-state (sequestered) in an intact water-swollen soil. Kinetics experiments monitoring each phase illustrate PFOA rapidly transfers from solution to the solid phase while for PFP the process is slower with longer residence times in the solution and gel phase. Interaction-based experiments reveal that PFOA enters the soil via its hydrophobic tails and selectively binds to soil microbial protein. PFP sorption shows less specificity exhibiting interactions with a range of gel and solid soil components with a preference toward aromatics (mainly lignin). The results indicate that in addition to more traditional measurements such as Koc, other factors including the influence of the contaminant on the soil-water interface, specific biological interactions, soil composition (content of lignin, protein, etc.) and physical accessibility/swellability of soil organic components will likely be central to better explaining and predicting the true behavior of contaminants in soil.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Poluentes do Solo/análise , Poluentes do Solo/química , Caprilatos/análise , Caprilatos/química , Flúor/análise , Fluorbenzenos/análise , Fluorbenzenos/química , Fluorocarbonos/análise , Fluorocarbonos/química , Géis , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lignina/química , Fenóis/análise , Fenóis/química , Solo/química , Microbiologia do Solo , Água/química
3.
Magn Reson Chem ; 53(9): 735-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25855560

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is arguably one the most powerful tools to study the interactions and molecular structure within plants. Traditionally, however, NMR has developed as two separate fields, one dealing with liquids and the other dealing with solids. Plants in their native state contain components that are soluble, swollen, and true solids. Here, a new form of NMR spectroscopy, developed in 2012, termed comprehensive multiphase (CMP)-NMR is applied for plant analysis. The technology composes all aspects of solution, gel, and solid-state NMR into a single NMR probe such that all components in all phases in native unaltered samples can be studied and differentiated in situ. The technology is evaluated using wild-type Arabidopsis thaliana and the cellulose-deficient mutant ectopic lignification1 (eli1) as examples. Using CMP-NMR to study intact samples eliminated the bias introduced by extraction methods and enabled the acquisition of a more complete structural and metabolic profile; thus, CMP-NMR revealed molecular differences between wild type (WT) and eli1 that could be overlooked by conventional methods. Methanol, fatty acids and/or lipids, glutamine, phenylalanine, starch, and nucleic acids were more abundant in eli1 than in WT. Pentaglycine was present in A. thaliana seedlings and more abundant in eli1 than in WT.


Assuntos
Arabidopsis/metabolismo , Celulose/metabolismo , Genes de Plantas , Espectroscopia de Ressonância Magnética/métodos , Metaboloma/fisiologia , Plântula/metabolismo , Arabidopsis/genética , Parede Celular/química , Parede Celular/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Deleção de Genes , Glutamina/análise , Glutamina/metabolismo , Espectroscopia de Ressonância Magnética/instrumentação , Metanol/análise , Metanol/metabolismo , Ácidos Nucleicos/análise , Ácidos Nucleicos/metabolismo , Fenilalanina/análise , Fenilalanina/metabolismo , Células Vegetais/química , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Amido/análise , Amido/metabolismo , Água/análise , Água/metabolismo
4.
J Biomol NMR ; 60(2-3): 157-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25284462

RESUMO

Dynamic nuclear polarization (DNP) has become a powerful method to enhance spectroscopic sensitivity in the context of magnetic resonance imaging and nuclear magnetic resonance spectroscopy. We show that, compared to DNP at lower field (400 MHz/263 GHz), high field DNP (800 MHz/527 GHz) can significantly enhance spectral resolution and allows exploitation of the paramagnetic relaxation properties of DNP polarizing agents as direct structural probes under magic angle spinning conditions. Applied to a membrane-embedded K(+) channel, this approach allowed us to refine the membrane-embedded channel structure and revealed conformational substates that are present during two different stages of the channel gating cycle. High-field DNP thus offers atomic insight into the role of molecular plasticity during the course of biomolecular function in a complex cellular environment.


Assuntos
Proteínas de Bactérias/química , Campos Magnéticos , Ressonância Magnética Nuclear Biomolecular , Canais de Potássio/química , Isótopos de Carbono , Ativação do Canal Iônico , Solventes , Temperatura
5.
J Am Chem Soc ; 135(51): 19237-47, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24304221

RESUMO

Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure, and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide ß-strands into ß-sheets but also the ß-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The ß-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the residues buried within the interior of the fibrils.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular
6.
J Am Chem Soc ; 134(4): 2284-91, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22191415

RESUMO

A new nitroxide-based biradical having a long electron spin-lattice relaxation time (T(1e)) has been developed as an exogenous polarization source for DNP solid-state NMR experiments. The performance of this new biradical is demonstrated on hybrid silica-based mesostructured materials impregnated with 1,1,2,2-tetrachloroethane radical containing solutions, as well as in frozen bulk solutions, yielding DNP enhancement factors (ε) of over 100 at a magnetic field of 9.4 T and sample temperatures of ~100 K. The effects of radical concentration on the DNP enhancement factors and on the overall sensitivity enhancements (Σ(†)) are reported. The relatively high DNP efficiency of the biradical is attributed to an increased T(1e), which enables more effective saturation of the electron resonance. This new biradical is shown to outperform the polarizing agents used so far in DNP surface-enhanced NMR spectroscopy of materials, yielding a 113-fold increase in overall sensitivity for silicon-29 CPMAS spectra as compared to conventional NMR experiments at room temperature. This results in a reduction in experimental times by a factor >12,700, making the acquisition of (13)C and (15)N one- and two-dimensional NMR spectra at natural isotopic abundance rapid (hours). It has been used here to monitor a series of chemical reactions carried out on the surface functionalities of a hybrid organic-silica material.


Assuntos
Óxidos N-Cíclicos/química , Cicloexanos/química , Cristalografia por Raios X , Radicais Livres/síntese química , Radicais Livres/química , Espectroscopia de Ressonância Magnética , Magnetismo , Modelos Moleculares , Estrutura Molecular , Temperatura
7.
Environ Sci Technol ; 46(19): 10508-13, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22946434

RESUMO

The chemical nature of xenobiotic binding sites in soils is of vital importance to environmental biogeochemistry. Interactions between xenobiotics and the naturally occurring organic constituents of soils are strongly correlated to environmental persistence, bioaccessibility, and ecotoxicity. Nevertheless, because of the complex structural and chemical heterogeneity of soils, studies of these interactions are most commonly performed indirectly, using correlative methods, fractionation, or chemical modification. Here we identify the organic components of an unmodified peat soil where some organofluorine xenobiotic compounds interact using direct molecular-level methods. Using (19)F→(1)H cross-polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, the (19)F nuclei of organofluorine compounds are used to induce observable transverse magnetization in the (1)H nuclei of organic components of the soil with which they interact after sorption. The observed (19)F→(1)H CP-MAS spectra and dynamics are compared to those produced using model soil organic compounds, lignin and albumin. It is found that lignin-like components can account for the interactions observed in this soil for heptafluoronaphthol (HFNap) while protein structures can account for the interactions observed for perfluorooctanoic acid (PFOA). This study employs novel comprehensive multi-phase (CMP) NMR technology that permits the application of solution-, gel-, and solid-state NMR experiments on intact soil samples in their swollen state.


Assuntos
Compostos de Flúor/química , Espectroscopia de Ressonância Magnética/métodos , Solo/química , Albuminas/química , Albuminas/metabolismo , Sítios de Ligação , Caprilatos/química , Caprilatos/metabolismo , Compostos de Flúor/análise , Compostos de Flúor/metabolismo , Radioisótopos de Flúor , Fluorocarbonos/química , Fluorocarbonos/metabolismo , Substâncias Húmicas/análise , Lignina/química , Lignina/metabolismo
8.
J Am Chem Soc ; 133(35): 13967-74, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21774549

RESUMO

We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two being based on the analysis of long-range (13)C-(13)C correlation spectra and the third based on the identification of intermolecular interactions in (13)C-(15)N spectra. We show, in studies of fibrils formed by the 86-residue SH3 domain of PI3 kinase (PI3-SH3 or PI3K-SH3), that efficient (13)C-(13)C correlation spectra display a resonance degeneracy that establishes a parallel, in-register alignment of the proteins in the amyloid fibrils. In addition, this degeneracy can be circumvented to yield direct intermolecular constraints. The (13)C-(13)C experiments are corroborated by (15)N-(13)C correlation spectra obtained from a mixed [(15)N,(12)C]/[(14)N,(13)C] sample which directly quantify interstrand distances. Furthermore, when the spectra are recorded with signal enhancement provided by dynamic nuclear polarization (DNP) at 100 K, we demonstrate a dramatic increase (from 23 to 52) in the number of intermolecular (15)N-(13)C constraints detectable in the spectra. The increase in the information content is due to the enhanced signal intensities and to the fact that dynamic processes, leading to spectral intensity losses, are quenched at low temperatures. Thus, acquisition of low temperature spectra addresses a problem that is frequently encountered in MAS spectra of proteins. In total, the experiments provide 111 intermolecular (13)C-(13)C and (15)N-(13)C constraints that establish that the PI3-SH3 protein strands are aligned in a parallel, in-register arrangement within the amyloid fibril.


Assuntos
Amiloide/química , Ressonância Magnética Nuclear Biomolecular/métodos , Fosfatidilinositol 3-Quinases/química , Domínios de Homologia de src , Sequência de Aminoácidos , Proteínas de Bactérias/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Staphylococcus aureus/química
9.
Phys Chem Chem Phys ; 12(22): 5911-9, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20454733

RESUMO

Dynamic nuclear polarization (DNP) utilizes the inherently larger polarization of electrons to enhance the sensitivity of conventional solid-state NMR experiments at low temperature. Recent advances in instrumentation development and sample preparation have transformed this field and have opened up new opportunities for its application to biological systems. Here, we present DNP-enhanced (13)C-(13)C and (15)N-(13)C correlation experiments on GNNQQNY nanocrystals and amyloid fibrils acquired at 9.4 T and 100 K and demonstrate that DNP can be used to obtain assignments and site-specific structural information very efficiently. We investigate the influence of temperature on the resolution, molecular conformation, structural integrity and dynamics in these two systems. In addition, we assess the low-temperature performance of two commonly used solid-state NMR experiments, proton-driven spin diffusion (PDSD) and transferred echo double resonance (TEDOR), and discuss their potential as tools for measurement of structurally relevant distances at low temperature in combination with DNP.


Assuntos
Amiloide/química , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas/química , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Temperatura
10.
Phys Chem Chem Phys ; 12(22): 5850-60, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20449524

RESUMO

Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz (1)H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water-glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância Magnética/instrumentação , Micro-Ondas , Prolina/química , Propanóis/química , Temperatura , Ureia/química
13.
Chem Sci ; 7(8): 4856-4866, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155133

RESUMO

Comprehensive multiphase (CMP) NMR is a novel technology that integrates all the hardware from solution-, gel- and solid-state into a single NMR probe, permitting all phases to be studied in intact samples. Here comprehensive multiphase (CMP) NMR is used to study all components in a living organism for the first time. This work describes 4 new scientific accomplishments summarized as: (1) CMP-NMR is applied to a living animal, (2) an effective method to deliver oxygen to the organisms is described which permits longer studies essential for in-depth NMR analysis in general, (3) a range of spectral editing approaches are applied to fully differentiate the various phases solutions (metabolites) through to solids (shell) (4) 13C isotopic labelling and multidimensional NMR are combined to provide detailed assignment of metabolites and structural components in vivo. While not explicitly studied here the multiphase capabilities of the technique offer future possibilities to study kinetic transfer between phases (e.g. nutrient assimilation, contaminant sequestration), molecular binding at interfaces (e.g. drug or contaminant binding) and bonding across and between phases (e.g. muscle to bone) in vivo. Future work will need to focus on decreasing the spinning speed to reduce organism stress during analysis.

14.
Lab Chip ; 16(22): 4424-4435, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27757467

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is extremely powerful for chemical analysis but it suffers from lower mass sensitivity compared to many other analytical detection methods. NMR microcoils have been developed in response to this limitation, but interfacing these coils with small sample volumes is a challenge. We introduce here the first digital microfluidic system capable of interfacing droplets of analyte with microcoils in a high-field NMR spectrometer. A finite element simulation was performed to assist in determining appropriate system parameters. After optimization, droplets inside the spectrometer could be controlled remotely, permitting the observation of processes such as xylose-borate complexation and glucose oxidase catalysis. We propose that the combination of DMF and NMR will be a useful new tool for a wide range of applications in chemical analysis.


Assuntos
Dispositivos Lab-On-A-Chip , Espectroscopia de Ressonância Magnética/instrumentação , Integração de Sistemas
15.
J Agric Food Chem ; 62(1): 107-15, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24354469

RESUMO

Seeds are complex entities composed of liquids, gels, and solids. NMR spectroscopy is a powerful tool for studying molecular structure but has evolved into two fields, solution and solid state. Comprehensive multiphase (CMP) NMR spectroscopy is capable of liquid-, gel-, and solid-state experiments for studying intact samples where all organic components are studied and differentiated in situ. Herein, intact (13)C-labeled seeds were studied by a variety of 1D/2D (1)H/(13)C experiments. In the mobile phase, an assortment of metabolites in a single (13)C-labeled wheat seed were identified; the gel phase was dominated by triacylglycerides; the semisolid phase was composed largely of carbohydrate biopolymers, and the solid phase was greatly influenced by starchy endosperm signals. Subsequently, the seeds were compared and relative similarities and differences between seed types discussed. This study represents the first application of CMP-NMR to food chemistry and demonstrates its general utility and feasibility for studying intact heterogeneous samples.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Sementes/química , Brassica/química , Isótopos de Carbono , Glicerídeos/química , Marcação por Isótopo , Espectroscopia de Ressonância Magnética/instrumentação , Triticum/química , Zea mays/química
16.
Chem Commun (Camb) ; 48(5): 654-6, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22034623

RESUMO

A series of non-aqueous solvents combined with the exogenous biradical bTbK are developed for DNP NMR that yield enhancements comparable to the best available water based systems. 1,1,2,2-tetrachloroethane appears to be one of the most promising organic solvents for DNP solid-state NMR. Here this results in a reduction in experimental times by a factor of 1000. These new solvents are demonstrated with the first DNP surface enhanced NMR characterization of an organometallic complex supported on a hydrophobic surface.

17.
J Magn Reson ; 217: 61-76, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22425441

RESUMO

Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.


Assuntos
Misturas Complexas/análise , Misturas Complexas/química , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Transição de Fase , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA