RESUMO
CD8+ T cell-mediated escape mutations in Gag can reduce HIV-1 replication capacity (RC) and alter disease progression, but less is known about immune-mediated attenuation in other HIV-1 proteins. We generated 487 recombinant viruses encoding RT-integrase from individuals with chronic (n = 406) and recent (n = 81) HIV-1 subtype C infection and measured their in vitro RC using a green fluorescent protein (GFP) reporter T cell assay. In recently infected individuals, reverse transcriptase (RT)-integrase-driven RC correlated significantly with viral load set point (r = 0.25; P = 0.03) and CD4+ T cell decline (P = 0.013). Moreover, significant associations between RT integrase-driven RC and viral load (r = 0.28; P < 0.0001) and CD4+ T cell count (r = -0.29; P < 0.0001) remained in chronic infection. In early HIV infection, host expression of the protective HLA-B*81 allele was associated with lower RC (P = 0.05), as was expression of HLA-B*07 (P = 0.02), suggesting early immune-driven attenuation of RT-integrase by these alleles. In chronic infection, HLA-A*30:09 (in linkage disequilibrium with HLA-B*81) was significantly associated with lower RC (P = 0.05), and all 6 HLA-B alleles with the lowest RC measurements represented protective alleles, consistent with long-term effects of host immune pressures on lowering RT-integrase RC. The polymorphisms V241I, I257V, P272K, and E297K in reverse transcriptase and I201V in integrase, all relatively uncommon polymorphisms occurring in or adjacent to optimally described HLA-restricted cytotoxic T-lymphocyte epitopes, were associated with reduced RC. Together, our data suggest that RT-integrase-driven RC is clinically relevant and provide evidence that immune-driven selection of mutations in RT-integrase can compromise RC.IMPORTANCE Identification of viral mutations that compromise HIV's ability to replicate may aid rational vaccine design. However, while certain escape mutations in Gag have been shown to reduce HIV replication and influence clinical progression, less is known about the consequences of mutations that naturally arise in other HIV proteins. Pol is a highly conserved protein, but the impact of Pol function on HIV disease progression is not well defined. Here, we generated recombinant viruses using the RT-integrase region of Pol derived from HIV-1C-infected individuals with recent and chronic infection and measured their ability to replicate in vitro We demonstrate that RT-integrase-driven replication ability significantly impacts HIV disease progression. We further show evidence of immune-mediated attenuation in RT-integrase and identify specific polymorphisms in RT-integrase that significantly decrease HIV-1 replication ability, suggesting which Pol epitopes could be explored in vaccine development.
Assuntos
Infecções por HIV/genética , Integrase de HIV/genética , Transcriptase Reversa do HIV/genética , HIV-1/genética , Interações Hospedeiro-Patógeno , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Alelos , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Estudos de Coortes , Progressão da Doença , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Regulação da Expressão Gênica , Genes Reporter , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Integrase de HIV/imunologia , Transcriptase Reversa do HIV/imunologia , HIV-1/classificação , HIV-1/imunologia , HIV-1/patogenicidade , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Carga Viral , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologiaRESUMO
BACKGROUND: Alternative polyadenylation (APA) results in messenger RNA molecules with different 3' untranslated regions (3' UTRs), affecting the molecules' stability, localization, and translation. APA is pervasive and implicated in cancer. Earlier reports on APA focused on 3' UTR length modifications and commonly characterized APA events as 3' UTR shortening or lengthening. However, such characterization oversimplifies the processing of 3' ends of transcripts and fails to adequately describe the various scenarios we observe. RESULTS: We built a cloud-based targeted de novo transcript assembly and analysis pipeline that incorporates our previously developed cleavage site prediction tool, KLEAT. We applied this pipeline to elucidate the APA profiles of 114 genes in 9939 tumor and 729 tissue normal samples from The Cancer Genome Atlas (TCGA). The full set of 10,668 RNA-Seq samples from 33 cancer types has not been utilized by previous APA studies. By comparing the frequencies of predicted cleavage sites between normal and tumor sample groups, we identified 77 events (i.e. gene-cancer type pairs) of tumor-specific APA regulation in 13 cancer types; for 15 genes, such regulation is recurrent across multiple cancers. Our results also support a previous report showing the 3' UTR shortening of FGF2 in multiple cancers. However, over half of the events we identified display complex changes to 3' UTR length that resist simple classification like shortening or lengthening. CONCLUSIONS: Recurrent tumor-specific regulation of APA is widespread in cancer. However, the regulation pattern that we observed in TCGA RNA-seq data cannot be described as straightforward 3' UTR shortening or lengthening. Continued investigation into this complex, nuanced regulatory landscape will provide further insight into its role in tumor formation and development.
Assuntos
Neoplasias/genética , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Computação em Nuvem , Bases de Dados Genéticas , Fator 2 de Crescimento de Fibroblastos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Recidiva Local de Neoplasia/genética , Neoplasias/patologia , Poliadenilação , Clivagem do RNA , RNA Mensageiro/metabolismo , SoftwareRESUMO
UNLABELLED: Human leukocyte antigen (HLA) class I-associated polymorphisms in HIV-1 that persist upon transmission to HLA-mismatched hosts may spread in the population as the epidemic progresses. Transmission of HIV-1 sequences containing such adaptations may undermine cellular immune responses to the incoming virus in future hosts. Building upon previous work, we investigated the extent of HLA-associated polymorphism accumulation in HIV-1 polymerase (Pol) through comparative analysis of linked HIV-1/HLA class I genotypes sampled during historic (1979 to 1989; n = 338) and modern (2001 to 2011; n = 278) eras from across North America (Vancouver, BC, Canada; Boston, MA; New York, NY; and San Francisco, CA). Phylogenies inferred from historic and modern HIV-1 Pol sequences were star-like in shape, with an inferred most recent common ancestor (epidemic founder virus) sequence nearly identical to the modern North American subtype B consensus sequence. Nevertheless, modern HIV-1 Pol sequences exhibited roughly 2-fold-higher patristic (tip-to-tip) genetic distances than historic sequences, with HLA pressures likely driving ongoing diversification. Moreover, the frequencies of published HLA-associated polymorphisms in individuals lacking the selecting HLA class I allele was on average â¼2.5-fold higher in the modern than in the historic era, supporting their spread in circulation, though some remained stable in frequency during this time. Notably, polymorphisms restricted by protective HLA alleles appear to be spreading to a greater relative extent than others, though these increases are generally of modest absolute magnitude. However, despite evidence of polymorphism spread, North American hosts generally remain at relatively low risk of acquiring an HIV-1 polymerase sequence substantially preadapted to their HLA profiles, even in the present era. IMPORTANCE: HLA class I-restricted cytotoxic T-lymphocyte (CTL) escape mutations in HIV-1 that persist upon transmission may accumulate in circulation over time, potentially undermining host antiviral immunity to the transmitted viral strain. We studied >600 experimentally collected HIV-1 polymerase sequences linked to host HLA information dating back to 1979, along with phylogenetically reconstructed HIV-1 sequences dating back to the virus' introduction into North America. Overall, our results support the gradual spread of many-though not all-HIV-1 polymerase immune escape mutations in circulation over time. This is consistent with recent observations from other global regions, though the extent of polymorphism accumulation in North America appears to be lower than in populations with high seroprevalence, older epidemics, and/or limited HLA diversity. Importantly, the risk of acquiring an HIV-1 polymerase sequence at transmission that is substantially preadapted to one's HLA profile remains relatively low in North America, even in the present era.
Assuntos
Adaptação Biológica , Variação Genética , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , HIV-1/enzimologia , Antígenos de Histocompatibilidade Classe I/genética , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética , Estudos de Coortes , Epidemias , Genótipo , HIV-1/genética , HIV-1/imunologia , Humanos , Masculino , América do Norte/epidemiologia , FilogeniaRESUMO
IMPORTANCE: Characterizing the human immunodeficiency virus (HIV) reservoir that endures despite antiretroviral therapy (ART) is critical to cure efforts. We observed that the oldest proviruses persisting during ART were exclusively defective, while intact proviruses (and rebound HIV) dated to nearer ART initiation. This helps explain why studies that sampled sub-genomic proviruses on-ART (which are largely defective) routinely found sequences dating to early infection, whereas those that sampled replication-competent HIV found almost none. Together with our findings that intact proviruses were more likely to be clonal, and that on-ART low-level/isolated viremia originated from proviruses of varying ages (including possibly defective ones), our observations indicate that (i) on-ART and rebound viremia can have distinct within-host origins, (ii) intact proviruses have shorter lifespans than grossly defective ones and thus depend more heavily on clonal expansion for persistence, and (iii) an HIV reservoir predominantly "dating" to near ART initiation will be substantially adapted to within-host pressures, complicating immune-based cure strategies.
RESUMO
In order to cure HIV, we need to better understand the within-host evolutionary origins of the small reservoir of genome-intact proviruses that persists within infected cells during antiretroviral therapy (ART). Most prior studies on reservoir evolutionary dynamics however did not discriminate genome-intact proviruses from the vast background of defective ones. We reconstructed within-host pre-ART HIV evolutionary histories in six individuals and leveraged this information to infer the ages of intact and defective proviruses sampled after an average >9 years on ART, along with the ages of rebound and low-level/isolated viremia occurring during this time. We observed that the longest-lived proviruses persisting on ART were exclusively defective, usually due to large deletions. In contrast, intact proviruses and rebound HIV exclusively dated to the years immediately preceding ART. These observations are consistent with genome-intact proviruses having shorter lifespans, likely due to the cumulative risk of elimination following viral reactivation and protein production. Consistent with this, intact proviruses (and those with packaging signal defects) were three times more likely to be genetically identical compared to other proviral types, highlighting clonal expansion as particularly important in ensuring their survival. By contrast, low-level/isolated viremia sequences were genetically heterogeneous and sometimes ancestral, where viremia may have originated from defective proviruses. Results reveal that the HIV reservoir is dominated by clonally-enriched and genetically younger sequences that date to the untreated infection period when viral populations had been under within-host selection pressures for the longest duration. Knowledge of these qualities may help focus strategies for reservoir elimination.
RESUMO
Curing HIV will require eliminating the reservoir of integrated, replication-competent proviruses that persist despite antiretroviral therapy (ART). Understanding the burden, genetic diversity, and longevity of persisting proviruses in diverse individuals with HIV is critical to this goal, but these characteristics remain understudied in some groups. Among them are viremic controllers-individuals who naturally suppress HIV to low levels but for whom therapy is nevertheless recommended. We reconstructed within-host HIV evolutionary histories from longitudinal single-genome amplified viral sequences in four viremic controllers who eventually initiated ART and used this information to characterize the age and diversity of proviruses persisting on therapy. We further leveraged these within-host proviral age distributions to estimate rates of proviral turnover prior to ART. This is an important yet understudied metric, since pre-ART proviral turnover dictates reservoir composition at ART initiation (and thereafter), which is when curative interventions, once developed, would be administered. Despite natural viremic control, all participants displayed significant within-host HIV evolution pretherapy, where overall on-ART proviral burden and diversity broadly reflected the extent of viral replication and diversity pre-ART. Consistent with recent studies of noncontrollers, the proviral pools of two participants were skewed toward sequences that integrated near ART initiation, suggesting dynamic proviral turnover during untreated infection. In contrast, proviruses recovered from the other two participants dated to time points that were more evenly spread throughout infection, suggesting slow or negligible proviral decay following deposition. HIV cure strategies will need to overcome within-host proviral diversity, even in individuals who naturally controlled HIV replication before therapy. IMPORTANCE HIV therapy is lifelong because integrated, replication-competent viral copies persist within long-lived cells. To cure HIV, we need to understand when these viral reservoirs form, how large and genetically diverse they are, and how long they endure. Elite controllers-individuals who naturally suppress HIV to undetectable levels-are being intensely studied as models of HIV remission, but viremic controllers, individuals who naturally suppress HIV to low levels, remain understudied even though they too may hold valuable insights. We combined phylogenetics and mathematical modeling to reconstruct proviral seeding and decay from infection to therapy-mediated suppression in four viremic controllers. We recovered diverse proviruses persisting during therapy that broadly reflected HIV's within-host evolutionary history, where the estimated half-lives of the persistent proviral pool during untreated infection ranged from <1 year to negligible. Cure strategies will need to contend with proviral diversity and between-host heterogeneity, even in individuals who naturally control HIV.
Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , Provírus/genética , Viremia/tratamento farmacológico , Viremia/virologia , Idoso , Estudos de Coortes , Controladores de Elite/estatística & dados numéricos , Evolução Molecular , Variação Genética , Genoma Viral , Infecções por HIV/imunologia , HIV-1/classificação , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Filogenia , Provírus/efeitos dos fármacos , Provírus/fisiologia , Carga Viral , Viremia/imunologia , Replicação ViralRESUMO
PURPOSE: Gene fusions are important oncogenic drivers and many are actionable. Whole-genome and transcriptome (WGS and RNA-seq, respectively) sequencing can discover novel clinically relevant fusions. EXPERIMENTAL DESIGN: Using WGS and RNA-seq, we reviewed the prevalence of fusions in a cohort of 570 patients with cancer, and compared prevalence to that predicted with commercially available panels. Fusions were annotated using a consensus variant calling pipeline (MAVIS) and required that a contig of the breakpoint could be constructed and supported from ≥2 structural variant detection approaches. RESULTS: In 570 patients with advanced cancer, MAVIS identified 81 recurrent fusions by WGS and 111 by RNA-seq, of which 18 fusions by WGS and 19 by RNA-seq were noted in at least 3 separate patients. The most common fusions were EML4-ALK in thoracic malignancies (9/69, 13%), and CMTM8-CMTM7 in colorectal cancer (4/73, 5.5%). Combined genomic and transcriptomic analysis identified novel fusion partners for clinically relevant genes, such as NTRK2 (novel partners: SHC3, DAPK1), and NTRK3 (novel partners: POLG, PIBF1). CONCLUSIONS: Utilizing WGS/RNA-seq facilitates identification of novel fusions in clinically relevant genes, and detected a greater proportion than commercially available panels are expected to find. A significant benefit of WGS and RNA-seq is the innate ability to retrospectively identify variants that becomes clinically relevant over time, without the need for additional testing, which is not possible with panel-based approaches.
Assuntos
Perfilação da Expressão Gênica/métodos , Fusão Gênica , Genômica/métodos , Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Humanos , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , RNA-Seq/métodos , Estudos Retrospectivos , Resultado do Tratamento , Sequenciamento do Exoma/métodosRESUMO
HIV-1-specific CD8+ T cells are an important component of HIV-1 curative strategies. Viral variants in the HIV-1 reservoir may limit the capacity of T cells to detect and clear virus-infected cells. We investigated the patterns of T cell escape variants in the replication-competent reservoir of 25 persons living with HIV-1 (PLWH) durably suppressed on antiretroviral therapy (ART). We identified all reactive T cell epitopes in the HIV-1 proteome for each participant and sequenced HIV-1 outgrowth viruses from resting CD4+ T cells. All non-synonymous mutations in reactive T cell epitopes were tested for their effect on the size of the T cell response, with a≥50% loss defined as an escape mutation. The majority (68%) of T cell epitopes harbored no detectable escape mutations. These findings suggest that circulating T cells in PLWH on ART could contribute to control of rebound and could be targeted for boosting in curative strategies.
Assuntos
Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Latência Viral/efeitos dos fármacos , Adulto , Idoso , Estudos de Coortes , Epitopos/imunologia , Feminino , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Filogenia , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacosRESUMO
Advanced and metastatic tumors with complex treatment histories drive cancer mortality. Here we describe the POG570 cohort, a comprehensive whole-genome, transcriptome and clinical dataset, amenable for exploration of the impacts of therapies on genomic landscapes. Previous exposure to DNA-damaging chemotherapies and mutations affecting DNA repair genes, including POLQ and genes encoding Polζ, were associated with genome-wide, therapy-induced mutagenesis. Exposure to platinum therapies coincided with signatures SBS31 and DSB5 and, when combined with DNA synthesis inhibitors, signature SBS17b. Alterations in ESR1, EGFR, CTNNB1, FGFR1, VEGFA and DPYD were consistent with drug resistance and sensitivity. Recurrent noncoding events were found in regulatory region hotspots of genes including TERT, PLEKHS1, AP2A1 and ADGRG6. Mutation burden and immune signatures corresponded with overall survival and response to immunotherapy. Our data offer a rich resource for investigation of advanced cancers and interpretation of whole-genome and transcriptome sequencing in the context of a cancer clinic.
Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológicoRESUMO
Mycobacterium chimaera, a nontuberculous mycobacterium (NTM) belonging to the Mycobacterium avium complex (MAC), is an opportunistic pathogen that can cause respiratory and disseminated disease. We report the complete genome sequence of a strain, SJ42, isolated from an immunocompromised male presenting with MAC pneumonia, assembled from Illumina and Oxford Nanopore data.