Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(1): 35-46.e19, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340348

RESUMO

Paralytic polio once afflicted almost half a million children each year. The attenuated oral polio vaccine (OPV) has enabled world-wide vaccination efforts, which resulted in nearly complete control of the disease. However, poliovirus eradication is hampered globally by epidemics of vaccine-derived polio. Here, we describe a combined theoretical and experimental strategy that describes the molecular events leading from OPV to virulent strains. We discover that similar evolutionary events occur in most epidemics. The mutations and the evolutionary trajectories driving these epidemics are replicated using a simple cell-based experimental setup where the rate of evolution is intentionally accelerated. Furthermore, mutations accumulating during epidemics increase the replication fitness of the virus in cell culture and increase virulence in an animal model. Our study uncovers the evolutionary strategies by which vaccine strains become pathogenic and provides a powerful framework for rational design of safer vaccine strains and for forecasting virulence of viruses. VIDEO ABSTRACT.


Assuntos
Poliomielite/virologia , Vacina Antipólio Oral/efeitos adversos , Vacina Antipólio Oral/genética , Poliovirus/patogenicidade , Animais , Evolução Biológica , Camundongos , Filogenia , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio Oral/classificação , Vacina Antipólio Oral/imunologia
2.
Nature ; 619(7968): 135-142, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316671

RESUMO

Vaccination with Sabin, a live attenuated oral polio vaccine (OPV), results in robust intestinal and humoral immunity and has been key to controlling poliomyelitis. As with any RNA virus, OPV evolves rapidly to lose attenuating determinants critical to the reacquisition of virulence1-3 resulting in vaccine-derived, virulent poliovirus variants. Circulation of these variants within underimmunized populations leads to further evolution of circulating, vaccine-derived poliovirus with higher transmission capacity, representing a significant risk of polio re-emergence. A new type 2 OPV (nOPV2), with promising clinical data on genetic stability and immunogenicity, recently received authorization from the World Health Organization for use in response to circulating, vaccine-derived poliovirus outbreaks. Here we report the development of two additional live attenuated vaccine candidates against type 1 and 3 polioviruses. The candidates were generated by replacing the capsid coding region of nOPV2 with that from Sabin 1 or 3. These chimeric viruses show growth phenotypes similar to nOPV2 and immunogenicity comparable to their parental Sabin strains, but are more attenuated. Our experiments in mice and deep sequencing analysis confirmed that the candidates remain attenuated and preserve all the documented nOPV2 characteristics concerning genetic stability following accelerated virus evolution. Importantly, these vaccine candidates are highly immunogenic in mice as monovalent and multivalent formulations and may contribute to poliovirus eradication.


Assuntos
Poliomielite , Vacina Antipólio Oral , Poliovirus , Vacinas Atenuadas , Animais , Camundongos , Modelos Animais de Doenças , Poliomielite/imunologia , Poliomielite/prevenção & controle , Poliomielite/virologia , Poliovirus/classificação , Poliovirus/genética , Poliovirus/imunologia , Vacina Antipólio Oral/química , Vacina Antipólio Oral/genética , Vacina Antipólio Oral/imunologia , Vacinas Atenuadas/química , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Erradicação de Doenças
3.
J Infect Dis ; 228(Suppl 6): S427-S445, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849401

RESUMO

Picornaviruses are nonenveloped particles with a single-stranded RNA genome of positive polarity. This virus family includes poliovirus, hepatitis A virus, rhinoviruses, and Coxsackieviruses. Picornaviruses are common human pathogens, and infection can result in a spectrum of serious illnesses, including acute flaccid myelitis, severe respiratory complications, and hand-foot-mouth disease. Despite research on poliovirus establishing many fundamental principles of RNA virus biology and the first transgenic animal model of disease for infection by a human virus, picornaviruses are understudied. Existing knowledge gaps include, identification of molecules required for virus entry, understanding cellular and humoral immune responses elicited during virus infection, and establishment of immune-competent animal models of virus pathogenesis. Such knowledge is necessary for development of pan-picornavirus countermeasures. Defining enterovirus A71 and D68, human rhinovirus C, and echoviruses 29 as prototype pathogens of this virus family may provide insight into picornavirus biology needed to establish public health strategies necessary for pandemic preparedness.


Assuntos
Infecções por Enterovirus , Picornaviridae , Poliovirus , Animais , Humanos , Picornaviridae/genética , Poliovirus/fisiologia , Rhinovirus , Enterovirus Humano B/fisiologia
4.
J Gen Virol ; 104(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37390009

RESUMO

Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation.We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilized virus-like particles (VLPs) in Pichia pastoris.The stabilized VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilization, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralize virus in vitro. Therefore, anti-EVA71 neutralizing antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies.


Assuntos
Infecções por Enterovirus , Enterovirus , Poliovirus , Vacinas , Criança , Humanos , Pré-Escolar , Antígenos Virais/genética , Poliovirus/genética , Anticorpos Antivirais
5.
J Gen Virol ; 103(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35997623

RESUMO

Enterovirus A71 (EVA71) infection can result in paralysis and may be fatal. In common with other picornaviruses, empty capsids are produced alongside infectious virions during the viral lifecycle. These empty capsids are antigenically indistinguishable from infectious virus, but at moderate temperatures they are converted to an expanded conformation. In the closely related poliovirus, native and expanded antigenic forms of particle have different long-term protective efficacies when used as vaccines. The native form provides long-lived protective immunity, while expanded capsids fail to generate immunological protection. Whether this is true for EVA71 remains to be determined. Here, we selected an antigenically stable EVA71 virus population using successive rounds of heating and passage and characterized the antigenic conversion of both virions and empty capsids. The mutations identified within the heated passaged virus were dispersed across the capsid, including at key sites associated with particle expansion. The data presented here indicate that the mutant sequence may be a useful resource to address the importance of antigenic conformation in EVA71 vaccines.


Assuntos
Infecções por Enterovirus , Enterovirus , Antígenos Virais/genética , Capsídeo , Proteínas do Capsídeo/genética , Humanos
6.
MMWR Morb Mortal Wkly Rep ; 71(24): 786-790, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709073

RESUMO

The emergence and international spread of neurovirulent circulating vaccine-derived polioviruses (cVDPVs) across multiple countries in Africa and Asia in recent years pose a major challenge to the goal of eradicating all forms of polioviruses. Approximately 90% of all cVDPV outbreaks are caused by the type 2 strain of the Sabin vaccine, an oral live, attenuated vaccine; cVDPV outbreaks typically occur in areas of persistently low immunization coverage (1). A novel type 2 oral poliovirus vaccine (nOPV2), produced by genetic modification of the type 2 Sabin vaccine virus genome (2), was developed and evaluated through phase I and phase II clinical trials during 2017-2019. nOPV2 was demonstrated to be safe and well-tolerated, have noninferior immunogenicity, and have superior genetic stability compared with Sabin monovalent type 2 (as measured by preservation of the primary attenuation site [domain V in the 5' noncoding region] and significantly lower neurovirulence of fecally shed vaccine virus in transgenic mice) (3-5). These findings indicate that nOPV2 could be an important tool in reducing the risk for generating vaccine-derived polioviruses (VDPVs) and the risk for vaccine-associated paralytic poliomyelitis cases. Based on the favorable preclinical and clinical data, and the public health emergency of international concern generated by ongoing endemic wild poliovirus transmission and cVDPV type 2 outbreaks, the World Health Organization authorized nOPV2 for use under the Emergency Use Listing (EUL) pathway in November 2020, allowing for its first use for outbreak response in March 2021 (6). As required by the EUL process, among other EUL obligations, an extensive plan was developed and deployed for obtaining and monitoring nOPV2 isolates detected during acute flaccid paralysis (AFP) surveillance, environmental surveillance, adverse events after immunization surveillance, and targeted surveillance for adverse events of special interest (i.e., prespecified events that have the potential to be causally associated with the vaccine product), during outbreak response, as well as through planned field studies. Under this monitoring framework, data generated from whole-genome sequencing of nOPV2 isolates, alongside other virologic data for isolates from AFP and environmental surveillance systems, are reviewed by the genetic characterization subgroup of an nOPV working group of the Global Polio Eradication Initiative. Global nOPV2 genomic surveillance during March-October 2021 confirmed genetic stability of the primary attenuating site. Sequence data generated through this unprecedented global effort confirm the genetic stability of nOPV2 relative to Sabin 2 and suggest that nOPV2 will be an important tool in the eradication of poliomyelitis. nOPV2 surveillance should continue for the duration of the EUL.


Assuntos
Poliomielite , Vacina Antipólio Oral , Poliovirus , Animais , Viroses do Sistema Nervoso Central/prevenção & controle , Surtos de Doenças/prevenção & controle , Humanos , Camundongos , Mielite/prevenção & controle , Doenças Neuromusculares/prevenção & controle , Poliomielite/epidemiologia , Poliomielite/etiologia , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio Oral/efeitos adversos , Vacina Antipólio Oral/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética
7.
Lancet ; 394(10193): 148-158, 2019 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31174831

RESUMO

BACKGROUND: Use of oral live-attenuated polio vaccines (OPV), and injected inactivated polio vaccines (IPV) has almost achieved global eradication of wild polio viruses. To address the goals of achieving and maintaining global eradication and minimising the risk of outbreaks of vaccine-derived polioviruses, we tested novel monovalent oral type-2 poliovirus (OPV2) vaccine candidates that are genetically more stable than existing OPVs, with a lower risk of reversion to neurovirulence. Our study represents the first in-human testing of these two novel OPV2 candidates. We aimed to evaluate the safety and immunogenicity of these vaccines, the presence and extent of faecal shedding, and the neurovirulence of shed virus. METHODS: In this double-blind, single-centre phase 1 trial, we isolated participants in a purpose-built containment facility at the University of Antwerp Hospital (Antwerp, Belgium), to minimise the risk of environmental release of the novel OPV2 candidates. Participants, who were recruited by local advertising, were adults (aged 18-50 years) in good health who had previously been vaccinated with IPV, and who would not have any contact with immunosuppressed or unvaccinated people for the duration of faecal shedding at the end of the study. The first participant randomly chose an envelope containing the name of a vaccine candidate, and this determined their allocation; the next 14 participants to be enrolled in the study were sequentially allocated to this group and received the same vaccine. The subsequent 15 participants enrolled after this group were allocated to receive the other vaccine. Participants and the study staff were masked to vaccine groups until the end of the study period. Participants each received a single dose of one vaccine candidate (candidate 1, S2/cre5/S15domV/rec1/hifi3; or candidate 2, S2/S15domV/CpG40), and they were monitored for adverse events, immune responses, and faecal shedding of the vaccine virus for 28 days. Shed virus isolates were tested for the genetic stability of attenuation. The primary outcomes were the incidence and type of serious and severe adverse events, the proportion of participants showing viral shedding in their stools, the time to cessation of viral shedding, the cell culture infective dose of shed virus in virus-positive stools, and a combined index of the prevalence, duration, and quantity of viral shedding in all participants. This study is registered with EudraCT, number 2017-000908-21 and ClinicalTrials.gov, number NCT03430349. FINDINGS: Between May 22 and Aug 22, 2017, 48 volunteers were screened, of whom 15 (31%) volunteers were excluded for reasons relating to the inclusion or exclusion criteria, three (6%) volunteers were not treated because of restrictions to the number of participants in each group, and 30 (63%) volunteers were sequentially allocated to groups (15 participants per group). Both novel OPV2 candidates were immunogenic and increased the median blood titre of serum neutralising antibodies; all participants were seroprotected after vaccination. Both candidates had acceptable tolerability, and no serious adverse events occurred during the study. However, severe events were reported in six (40%) participants receiving candidate 1 (eight events) and nine (60%) participants receiving candidate 2 (12 events); most of these events were increased blood creatinine phosphokinase but were not accompanied by clinical signs or symptoms. Vaccine virus was detected in the stools of 15 (100%) participants receiving vaccine candidate 1 and 13 (87%) participants receiving vaccine candidate 2. Vaccine poliovirus shedding stopped at a median of 23 days (IQR 15-36) after candidate 1 administration and 12 days (1-23) after candidate 2 administration. Total shedding, described by the estimated median shedding index (50% cell culture infective dose/g), was observed to be greater with candidate 1 than candidate 2 across all participants (2·8 [95% CI 1·8-3·5] vs 1·0 [0·7-1·6]). Reversion to neurovirulence, assessed as paralysis of transgenic mice, was low in isolates from those vaccinated with both candidates, and sequencing of shed virus indicated that there was no loss of attenuation in domain V of the 5'-untranslated region, the primary site of reversion in Sabin OPV. INTERPRETATION: We found that the novel OPV2 candidates were safe and immunogenic in IPV-immunised adults, and our data support the further development of these vaccines to potentially be used for maintaining global eradication of neurovirulent type-2 polioviruses. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Imunogenicidade da Vacina , Vacina Antipólio Oral/efeitos adversos , Vacina Antipólio Oral/imunologia , Poliovirus/imunologia , Adulto , Anticorpos Antivirais/sangue , Método Duplo-Cego , Fezes/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Poliomielite/prevenção & controle , Vacina Antipólio Oral/administração & dosagem , RNA Viral/análise , Método Simples-Cego , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Virulência/imunologia , Eliminação de Partículas Virais/imunologia , Adulto Jovem
8.
PLoS Pathog ; 13(1): e1006117, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103317

RESUMO

While wild type polio has been nearly eradicated there will be a need to continue immunisation programmes for some time because of the possibility of re-emergence and the existence of long term excreters of poliovirus. All vaccines in current use depend on growth of virus and most of the non-replicating (inactivated) vaccines involve wild type viruses known to cause poliomyelitis. The attenuated vaccine strains involved in the eradication programme have been used to develop new inactivated vaccines as production is thought safer. However it is known that the Sabin vaccine strains are genetically unstable and can revert to a virulent transmissible form. A possible solution to the need for virus growth would be to generate empty viral capsids by recombinant technology, but hitherto such particles are so unstable as to be unusable. We report here the genetic manipulation of the virus to generate stable empty capsids for all three serotypes. The particles are shown to be extremely stable and to generate high levels of protective antibodies in animal models.


Assuntos
Capsídeo/imunologia , Vacinas contra Poliovirus/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Estabilidade Proteica
9.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28356537

RESUMO

Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 107 to 109 50% tissue culture infective doses (TCID50) consistently infected all the animals, and many monkeys receiving 108 or 109 TCID50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines.IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with single high doses ranging from 107 to 109 TCID50 Mahoney type 1 virus were infected, and many of the monkeys developed paralysis. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia; tonsil, mesentery lymph nodes, and intestinal mucosa served as major target sites of viral replication. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), thereby supplementing historical reconstructions of poliovirus pathogenesis. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis, candidate antiviral drugs, and the efficacy of new vaccines.


Assuntos
Macaca , Poliomielite/patologia , Poliovirus/crescimento & desenvolvimento , Poliovirus/patogenicidade , Estruturas Animais/virologia , Animais , Modelos Animais de Doenças , Células Epiteliais/virologia , Fezes/virologia , Leucócitos/virologia , Nasofaringe/virologia , Eliminação de Partículas Virais
10.
Transfusion ; 58 Suppl 3: 3084-3089, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30536436

RESUMO

BACKGROUND: Wild-type poliovirus may be eradicated soon and under WHO GAPIII guidance, laboratory use will be discontinued or subject to strict containment. Per US Code of Federal Regulations, however, immunoglobulin lot release testing will still require use of replicating poliovirus. The suitability of S19 hyper-attenuated and apathogenic poliovirus strains as alternatives to the currently used wild-type virus in such a release assay was investigated. STUDY DESIGN AND METHODS: S19 poliovirus strains were propagated in a commercial setting using good virological practices and maintenance of the S19 hyper-attenuated genotype was confirmed by massively parallel sequencing. RESULTS: The attenuated phenotype of the produced S19 stocks was confirmed in a highly sensitive mouse-model. Equivalency in performance was seen in the lot release assay for the S19 and wild-type polioviruses. CONCLUSION: The deployment of such hyper-attenuated and thoroughly characterized S19 stocks in these and other essential activities might reconcile final containment measures with continued safe use of poliovirus.


Assuntos
Erradicação de Doenças , Imunoglobulinas/análise , Poliomielite/prevenção & controle , Poliovirus/fisiologia , Virologia/métodos , Animais , Erradicação de Doenças/métodos , Feminino , Variação Genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Poliovirus/genética , Poliovirus/imunologia , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico
11.
PLoS Pathog ; 11(12): e1005316, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26720150

RESUMO

Poliomyelitis has nearly been eradicated through the efforts of the World Health Organization's Global Eradication Initiative raising questions on containment of the virus after it has been eliminated in the wild. Most manufacture of inactivated polio vaccines currently requires the growth of large amounts of highly virulent poliovirus, and release from a production facility after eradication could be disastrous; WHO have therefore recommended the use of the attenuated Sabin strains for production as a safer option although it is recognised that they can revert to a transmissible paralytic form. We have exploited the understanding of the molecular virology of the Sabin vaccine strains to design viruses that are extremely genetically stable and hyperattenuated. The viruses are based on the type 3 Sabin vaccine strain and have been genetically modified in domain V of the 5' non-coding region by changing base pairs to produce a cassette into which capsid regions of other serotypes have been introduced. The viruses give satisfactory yields of antigenically and immunogenically correct viruses in culture, are without measurable neurovirulence and fail to infect non-human primates under conditions where the Sabin strains will do so.


Assuntos
Poliomielite/prevenção & controle , Vacinas contra Poliovirus/imunologia , Poliovirus/genética , Poliovirus/imunologia , Animais , Humanos , Vacinas Atenuadas/imunologia
12.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778240

RESUMO

Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation. We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilised virus-like particles (VLPs) in Pichia pastoris . The stabilised VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilisation, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralise virus in vitro . Therefore, the anti-EVA71 neutralising antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies.

13.
Vaccines (Basel) ; 10(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36146473

RESUMO

Emergence of mutations is an inherent property of RNA viruses with several implications for their replication, pathogenesis, and evolutionary adaptation. Oral poliovirus vaccine (OPV), developed by Albert Sabin, is composed of live attenuated polioviruses of three serotypes that can revert to neurovirulence during replication in cell culture and in vaccine recipients. Recently, a new modified variant of Sabin 2 virus was developed by introducing changes in its genome, making it more genetically stable to prevent the reversion. The new strain was used to manufacture novel OPV2 (nOPV2), which was approved by the World Health Organization for emergency use to stop outbreaks caused by circulating vaccine-derived poliovirus (cVDPV2). Manufacture of this improved vaccine requires close attention to the genetic heterogenicity to ensure that the levels of the undesirable mutations are limited. Preliminary studies using whole-genome Illumina sequencing (NGS) identified several genomic sites where mutations tend to occur with regularity. They include VP1-I143T amino acid change at the secondary attenuation site; VP1-N171D, a substitution that modestly increases neurovirulence in mice; and VP1-E295K, which may reduce the immunogenicity of the nOPV2. Therefore, to ensure the molecular consistency of vaccine batches, the content of these mutants must be quantified and kept within specifications. To do this, we have developed quantitative, multiplex, one-step reverse-transcriptase polymerase chain reactions (qmosRT-PCRs) as simple methods for quantification of these mutations. Each method uses specific short TaqMan probes with different dyes for the analysis of both mutants and non-mutants in the same sample. The quantification is done using calibration curves developed using validated reference materials. To evaluate the sensitivity and the linearity of the qmosRT-PCR method, the mutant viruses were spiked in non-mutant viruses, and nOPV2 batches were used to validate the method. The spiked samples and the nOPV2 batches were analyzed by qmosRT-PCR and NGS assays. The results showed that qmosRT-PCR is sensitive enough to detect around 1% of mutants. The percentages of mutants determined by qmosRT-PCR correlate well with the results of the NGS. Further, the analysis of the nOPV2 batches showed that the results of qmosRT-PCR correlated well with the results of NGS. In conclusion, the qmosRT-PCR is a specific, sensitive, and linear method. It could be used for quality control of the nOPV2 batches.

14.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632658

RESUMO

Genetic recombination in RNA viruses is an important evolutionary mechanism. It contributes to population diversity, host/tissue adaptation, and compromises vaccine efficacy. Both the molecular mechanism and initial products of recombination are relatively poorly understood. We used an established poliovirus-based in vitro recombination assay to investigate the roles of sequence identity and RNA structure, implicated or inferred from an analysis of circulating recombinant viruses, in the process. In addition, we used next-generation sequencing to investigate the early products of recombination after cellular coinfection with different poliovirus serotypes. In independent studies, we find no evidence for a role for RNA identity or structure in determining recombination junctions location. Instead, genome function and fitness are of greater importance in determining the identity of recombinant progeny. These studies provide further insights into this important evolutionary mechanism and emphasize the critical nature of the selection process on a mixed virus population.


Assuntos
Infecções por Enterovirus , Enterovirus , Poliovirus , Antígenos Virais , Enterovirus/genética , Genoma Viral , Humanos , Poliovirus/genética , RNA , Recombinação Genética
15.
mSphere ; 7(3): e0008822, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35642505

RESUMO

Enterovirus A71 (EVA71) is a medically important virus that is commonly associated with hand, foot, and mouth disease (HFMD). It is responsible for periodic outbreaks, resulting in significant economic impact and loss of life. Vaccination offers the potential to control future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are few tools to characterize the different antigenic forms of the virus. As with other picornaviruses, EVA71 virions exist in two antigenic states, native (NAg) and expanded (HAg). It is likely that the composition of vaccines, in terms of the proportions of NAg and HAg, will be important for vaccine efficacy and batch-to-batch consistency. This paper describes the development of a single-chain fused variable (scFv) domain fragment and the optimization of a sandwich enzyme-linked immunosorbent assay (ELISA) for the specific detection of the NAg conformation of EVA71. NAg specificity of the scFv was demonstrated using purified EVA71, and conversion of NAg to HAg by heating resulted in a loss of binding. We have thus developed an effective tool for characterization of the specific antigenic state of EVA71. IMPORTANCE EVA71 is a medically important virus that is commonly associated with HFMD, resulting in periodic outbreaks, significant economic impact, and loss of life. Vaccination offers the potential to curtail future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are very limited effective tools to characterize the different antigenic forms of EV71. As with other picornaviruses, EVA71 virions exist in two antigenic states, native and expanded. This paper describes the development of an scFv and the optimization of a sandwich ELISA for the specific detection of the native conformation of EVA71 as an effective tool for characterization of the specific antigenic state of EVA71.


Assuntos
Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Ensaio de Imunoadsorção Enzimática , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Vacinação
16.
Commun Biol ; 5(1): 1293, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434067

RESUMO

Strategies to prevent the recurrence of poliovirus (PV) after eradication may utilise non-infectious, recombinant virus-like particle (VLP) vaccines. Despite clear advantages over inactivated or attenuated virus vaccines, instability of VLPs can compromise their immunogenicity. Glutathione (GSH), an important cellular reducing agent, is a crucial co-factor for the morphogenesis of enteroviruses, including PV. We report cryo-EM structures of GSH bound to PV serotype 3 VLPs showing that it can enhance particle stability. GSH binds the positively charged pocket at the interprotomer interface shown recently to bind GSH in enterovirus F3 and putative antiviral benzene sulphonamide compounds in other enteroviruses. We show, using high-resolution cryo-EM, the binding of a benzene sulphonamide compound with a PV serotype 2 VLP, consistent with antiviral activity through over-stabilizing the interprotomer pocket, preventing the capsid rearrangements necessary for viral infection. Collectively, these results suggest GSH or an analogous tight-binding antiviral offers the potential for stabilizing VLP vaccines.


Assuntos
Enterovirus , Poliovirus , Vacinas de Partículas Semelhantes a Vírus , Poliovirus/metabolismo , Antivirais/farmacologia , Benzeno , Sítios de Ligação , Antígenos Virais , Glutationa/metabolismo , Sulfonamidas
17.
Lancet Microbe ; 3(12): e912-e921, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332645

RESUMO

BACKGROUND: Sabin strains used in oral poliovirus vaccines (OPV) can revert to virulence and, in rare instances, cause disease or generate vaccine-derived strains leading to outbreaks in areas of low immunisation coverage. A novel OPV2 (nOPV2) was designed to stabilise the viral genome against reversion and reduce recombination events that might lead to virulent strains. In this study, we evaluated the genetic and phenotypic stability of shed poliovirus following administration of one dose of monovalent OPV2 (mOPV2) or nOPV2 to infants aged 18-22 weeks. METHODS: In two similarly designed clinical trials (NCT02521974 and NCT03554798) conducted in Panama, infants aged 18-22-weeks, after immunisation with three doses of bivalent OPV (types 1 and 3) and one dose of inactivated poliovirus vaccine, were administered one or two doses of mOPV2 or nOPV2. In this analysis of two clinical trials, faecally shed polioviruses following one dose of mOPV2 or nOPV2 were isolated from stools meeting predetermined criteria related to sample timing and viral presence and quantity and assessed for nucleotide polymorphisms using next-generation sequencing. A transgenic mouse neurovirulence test was adapted to assess the effect of the possible phenotypic reversion of shed mOPV2 and nOPV2 with a logistic regression model. FINDINGS: Of the 91 eligible samples, 86 were able to be sequenced, with 72 evaluated in the transgenic mouse assay. Sabin-2 poliovirus reverts rapidly at nucleotide 481, the primary attenuation site in domain V of the 5' untranslated region of the genome. There was no evidence of neurovirulence-increasing polymorphisms in domain V of shed nOPV2. Reversion of shed Sabin-2 virus corresponded with unadjusted paralysis rates of 47·6% at the 4 log10 50% cell culture infectious dose (CCID50) and 76·7% at the 5 log10 CCID50 inoculum levels, with rates of 2·8% for 4 log10 CCID50 and 11·8% for 5 log10 CCID50 observed for shed nOPV2 samples. The estimated adjusted odds ratio at 4·5 log10 of 0·007 (95% CI 0·002-0·023; p<0·0001) indicates significantly reduced odds of mouse paralysis from virus obtained from nOPV2 recipients compared with mOPV2 recipients. INTERPRETATION: The data indicate increased genetic stability of domain V of nOPV2 relative to mOPV2, with significantly lower neurovirulence of shed nOPV2 virus compared with shed mOPV2. While this vaccine is currently being deployed under an emergency use listing, the data on the genetic stability of nOPV2 will support further regulatory and policy decision-making regarding use of nOPV2 in outbreak responses. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Poliomielite , Poliovirus , Camundongos , Animais , Poliovirus/genética , Poliomielite/prevenção & controle , Vacina Antipólio Oral , Regiões 5' não Traduzidas , Camundongos Transgênicos , Paralisia , Nucleotídeos
18.
NPJ Vaccines ; 7(1): 19, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149714

RESUMO

Novel oral poliovirus vaccine type 2 (nOPV2) is being developed to reduce the rare occurrence of disease and outbreaks associated with the genetic instability of the Sabin vaccine strains. Children aged 1 to 5 years were enrolled in two related clinical studies to assess safety, immunogenicity, shedding rates and properties of the shed virus following vaccination with nOPV2 (two candidates) versus traditional Sabin OPV type 2 (mOPV2). The anticipated pattern of reversion and increased virulence was observed for shed Sabin-2 virus, as assessed using a mouse model of poliovirus neurovirulence. In contrast, there were significantly reduced odds of mouse paralysis for shed virus for both nOPV2 candidates when compared to shed Sabin-2 virus. Next-generation sequencing of shed viral genomes was consistent with and further supportive of the observed neurovirulence associated with shed Sabin-2 virus, as well as the reduced reversion to virulence of shed candidate viruses. While shed Sabin-2 showed anticipated A481G reversion in the primary attenuation site in domain V in the 5' untranslated region to be associated with increased mouse paralysis, the stabilized domain V in the candidate viruses did not show polymorphisms consistent with reversion to neurovirulence. The available data from a key target age group for outbreak response confirm the superior genetic and phenotypic stability of shed nOPV2 strains compared to shed Sabin-2 and suggest that nOPV2 should be associated with less paralytic disease and potentially a lower risk of seeding new outbreaks.

19.
NPJ Vaccines ; 6(1): 5, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420068

RESUMO

Global vaccination programs using live-attenuated oral and inactivated polio vaccine (OPV and IPV) have almost eradicated poliovirus (PV) but these vaccines or their production pose significant risk in a polio-free world. Recombinant PV virus-like particles (VLPs), lacking the viral genome, represent safe next-generation vaccines, however their production requires optimisation. Here we present an efficient mammalian expression strategy producing good yields of wild-type PV VLPs for all three serotypes and a thermostabilised variant for PV3. Whilst the wild-type VLPs were predominantly in the non-native C-antigenic form, the thermostabilised PV3 VLPs adopted the native D-antigenic conformation eliciting neutralising antibody titres equivalent to the current IPV and were indistinguishable from natural empty particles by cryo-electron microscopy with a similar stabilising lipidic pocket-factor in the VP1 ß-barrel. This factor may not be available in alternative expression systems, which may require synthetic pocket-binding factors. VLPs equivalent to these mammalian expressed thermostabilized particles, represent safer non-infectious vaccine candidates for the post-eradication era.

20.
Vaccine X ; 8: 100102, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34195600

RESUMO

A novel, genetically-stabilized type 2 oral polio vaccine (nOPV2), developed to assist in the global polio eradication program, was recently the first-ever vaccine granted Emergency Use Listing by the WHO. Lot release tests for this vaccine included-for the first time to our knowledge-the assessment of genetic heterogeneity using next-generation sequencing (NGS). NGS ensures that the genetically-modified regions of the vaccine virus genome remain as designed and that levels of polymorphisms which may impact safety or efficacy are controlled during routine production. The variants present in nOPV2 lots were first assessed for temperature sensitivity and neurovirulence using molecular clones to inform which polymorphisms warranted formal evaluation during lot release. The novel use of NGS as a lot release test required formal validation of the method. Analysis of an nOPV2 lot spiked with the parental Sabin-2 strain enabled performance characteristics of the method to be assessed simultaneously at over 40 positions in the genome. These characteristics included repeatability and intermediate precision of polymorphism measurement, linearity of both spike-induced and nOPV2 lot-specific polymorphisms, and the limit-of-detection of spike-induced polymorphisms. The performance characteristics of the method met pre-defined criteria for 34 spike-induced polymorphic sites and 8 polymorphisms associated with the nOPV2 preparation; these sites collectively spanned most of the viral genome. Finally, the co-location of variants of interest on genomes was evaluated, with implications for the interpretation of NGS discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA