Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Physiol Educ ; 46(1): 77-83, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793264

RESUMO

Graduate physiology programs strive to provide students with in-depth expertise in a particular academic discipline, often facilitating this process in the form of a departmental seminar course. Within the Department of Physiology and Biophysics at the University of California Irvine (UCI), students are required to attend a seminar course, most often designed as a journal club, each quarter until they are ready to graduate. While this format may work well in departments where research topics are closely related, it has historically been less successful in UCI's Department of Physiology and Biophysics, where wide-ranging interests make for little overlap in foundational knowledge, limiting meaningful engagement with the material or with peers in the class. In this paper, we describe a complementary approach of developing a syllabus around student interests and covering topics that are critical for student success but often omitted from graduate curricula, such as interview skills, grant writing, and scientific communication. Results from our preclass survey motivated this approach to the class, and our retrospective survey demonstrated the substantial differences in student engagement, enthusiasm, and perceived benefits of this course relative to the journal club style course. We hope that the success of our course may serve as an exemplar for strategies to engage students more effectively and provide critical training in diverse skillsets that will help students after graduation.


Assuntos
Currículo , Estudantes , Logro , Humanos , Estudos Retrospectivos , Redação
2.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746369

RESUMO

Analysis of system-wide cellular communication changes in Alzheimer's disease (AD) has recently been enabled by single nucleus RNA sequencing (snRNA-seq) and new computational methods. Here, we combined these to analyze data from postmortem human tissue from the entorhinal cortex of AD patients and compared our findings to those from multiomic data from the 5xFAD amyloidogenic mouse model at two different time points. Using the cellular communication inference tool CellChat we found that disease-related changes were largely related to neuronal excitability as well as synaptic communication, with specific signaling pathways including BMP, EGF, and EPHA, and relatively poor conservation of glial-related changes during disease. Further analysis using the neuron-specific NeuronChat revealed changes relating to metabotropic glutamate receptors as well as neuronal adhesion molecules including neurexins and neuroligins. Our results that cellular processes relating to excitotoxicity are the best conserved between 5xFAD mice and AD suggest that excitotoxicity is the main common feature between pathogenesis in 5xFAD mice and AD patients.

3.
Cell Rep ; 39(5): 110775, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508124

RESUMO

Although midbrain dopamine (DA) circuits are central to motivated behaviors, our knowledge of how experience modifies these circuits to facilitate subsequent behavioral adaptations is limited. Here we demonstrate the selective role of a ventral tegmental area DA projection to the amygdala (VTADA→amygdala) for cocaine-induced anxiety but not cocaine reward or sensitization. Our rabies virus-mediated circuit mapping approach reveals a persistent elevation in spontaneous and task-related activity of inhibitory GABAergic cells from the bed nucleus of the stria terminalis (BNST) and downstream VTADA→amygdala cells that can be detected even after a single cocaine exposure. Activity in BNSTGABA→midbrain cells is related to cocaine-induced anxiety but not reward or sensitization, and silencing this projection prevents development of anxiety during protracted withdrawal after cocaine administration. Finally, we observe that VTADA→amygdala cells are strongly activated after a challenge exposure to cocaine and that activity in these cells is necessary and sufficient for reinstatement of cocaine place preference.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Tonsila do Cerebelo , Ansiedade , Cocaína/efeitos adversos , Dopamina , Humanos , Área Tegmentar Ventral
4.
Front Neural Circuits ; 15: 799688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153681

RESUMO

Decades of research have revealed the remarkable complexity of the midbrain dopamine (DA) system, which comprises cells principally located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Neither homogenous nor serving a singular function, the midbrain DA system is instead composed of distinct cell populations that (1) receive different sets of inputs, (2) project to separate forebrain sites, and (3) are characterized by unique transcriptional and physiological signatures. To appreciate how these differences relate to circuit function, we first need to understand the anatomical connectivity of unique DA pathways and how this connectivity relates to DA-dependent motivated behavior. We and others have provided detailed maps of the input-output relationships of several subpopulations of midbrain DA cells and explored the roles of these different cell populations in directing behavioral output. In this study, we analyze VTA inputs and outputs as a high dimensional dataset (10 outputs, 22 inputs), deploying computational techniques well-suited to finding interpretable patterns in such data. In addition to reinforcing our previous conclusion that the connectivity in the VTA is dependent on spatial organization, our analysis also uncovered a set of inputs elevated onto each projection-defined VTADA cell type. For example, VTADA→NAcLat cells receive preferential innervation from inputs in the basal ganglia, while VTADA→Amygdala cells preferentially receive inputs from populations sending a distributed input across the VTA, which happen to be regions associated with the brain's stress circuitry. In addition, VTADA→NAcMed cells receive ventromedially biased inputs including from the preoptic area, ventral pallidum, and laterodorsal tegmentum, while VTADA→mPFC cells are defined by dominant inputs from the habenula and dorsal raphe. We also go on to show that the biased input logic to the VTADA cells can be recapitulated using projection architecture in the ventral midbrain, reinforcing our finding that most input differences identified using rabies-based (RABV) circuit mapping reflect projection archetypes within the VTA.


Assuntos
Substância Negra , Área Tegmentar Ventral , Dopamina/metabolismo , Lógica , Tegmento Mesencefálico , Área Tegmentar Ventral/fisiologia
5.
Brain Stimul ; 14(5): 1226-1233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400379

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) has been used as a treatment of last resort for treatment-resistant depression (TRD) for more than a decade. Many DBS targets have been proposed and tested clinically, but the underlying circuit mechanisms remain unclear. Uncovering white matter tracts (WMT) activated by DBS targets may provide crucial information about the circuit substrates mediating DBS efficacy in ameliorating TRD. METHODS: We performed probabilistic tractography using diffusion magnetic resonance imaging datas from 100 healthy volunteers in Human Connectome Project datasets to analyze the structural connectivity patterns of stimulation targeting currently-used DBS target for TRD. We generated mean and binary fiber distribution maps and calculated the numbers of WMT streamlines in the dataset. RESULTS: Probabilistic tracking results revealed that activation of distinct DBS targets demonstrated modulation of overlapping but considerably distinct pathways. DBS targets were categorized into 4 groups: Cortical, Striatal, Thalamic, and Medial Forebrain Bundle according to their main modulated WMT and brain areas. Our data also revealed that Brodmann area 10 and amygdala are hub structures that are associated with all DBS targets. CONCLUSIONS: Our results together suggest that the distinct mechanism of DBS targets implies individualized target selection and formulation in the future of DBS treatment for TRD. The modulation of Brodmann area 10 and amygdala may be critical for the efficacy of DBS-mediated treatment of TRD.


Assuntos
Conectoma , Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Depressão , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/terapia , Humanos , Feixe Prosencefálico Mediano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA