Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 677, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39014327

RESUMO

Climate change is predicted to increase the occurrence of extreme weather events such as heatwaves, which may thereby impact the outcome of plant-herbivore interactions. While elevated temperature is known to directly affect herbivore growth, it remains largely unclear if it indirectly influences herbivore performance by affecting the host plant they feed on. In this study, we investigated how transient exposure to high temperature influences plant herbivory-induced defenses at the transcript and metabolic level. To this end, we studied the interaction between potato (Solanum tuberosum) plants and the larvae of the potato tuber moth (Phthorimaea operculella) under different temperature regimes. We found that P. operculella larvae grew heavier on leaves co-stressed by high temperature and insect herbivory than on leaves pre-stressed by herbivory alone. We also observed that high temperature treatments altered phylotranscriptomic patterns upon herbivory, which changed from an evolutionary hourglass pattern, in which transcriptomic responses at early and late time points after elicitation are more variable than the ones in the middle, to a vase pattern. Specifically, transcripts of many herbivory-induced genes in the early and late defense stage were suppressed by HT treatment, whereas those in the intermediate stage peaked earlier. Additionally, we observed that high temperature impaired the induction of jasmonates and defense compounds upon herbivory. Moreover, using jasmonate-reduced (JA-reduced, irAOC) and -elevated (JA-Ile-elevated, irCYP94B3s) potato plants, we showed that high temperature suppresses JA signaling mediated plant-induced defense to herbivore attack. Thus, our study provides evidences on how temperature reprograms plant-induced defense to herbivores.


Assuntos
Resposta ao Choque Térmico , Herbivoria , Larva , Mariposas , Solanum tuberosum , Solanum tuberosum/fisiologia , Solanum tuberosum/parasitologia , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Animais , Mariposas/fisiologia , Larva/fisiologia , Regulação da Expressão Gênica de Plantas , Folhas de Planta/fisiologia , Folhas de Planta/parasitologia , Temperatura Alta , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Defesa das Plantas contra Herbivoria , Transcriptoma , Mudança Climática
2.
PLoS Biol ; 19(2): e3001114, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600420

RESUMO

Plants produce complex mixtures of primary and secondary metabolites. Herbivores use these metabolites as behavioral cues to increase their fitness. However, how herbivores combine and integrate different metabolite classes into fitness-relevant foraging decisions in planta is poorly understood. We developed a molecular manipulative approach to modulate the availability of sugars and benzoxazinoid secondary metabolites as foraging cues for a specialist maize herbivore, the western corn rootworm. By disrupting sugar perception in the western corn rootworm and benzoxazinoid production in maize, we show that sugars and benzoxazinoids act as distinct and dynamically combined mediators of short-distance host finding and acceptance. While sugars improve the capacity of rootworm larvae to find a host plant and to distinguish postembryonic from less nutritious embryonic roots, benzoxazinoids are specifically required for the latter. Host acceptance in the form of root damage is increased by benzoxazinoids and sugars in an additive manner. This pattern is driven by increasing damage to postembryonic roots in the presence of benzoxazinoids and sugars. Benzoxazinoid- and sugar-mediated foraging directly improves western corn rootworm growth and survival. Interestingly, western corn rootworm larvae retain a substantial fraction of their capacity to feed and survive on maize plants even when both classes of chemical cues are almost completely absent. This study unravels fine-grained differentiation and combination of primary and secondary metabolites into herbivore foraging and documents how the capacity to compensate for the lack of important chemical cues enables a specialist herbivore to survive within unpredictable metabolic landscapes.


Assuntos
Benzoxazinas/metabolismo , Besouros/fisiologia , Açúcares/metabolismo , Zea mays/metabolismo , Animais , Comportamento Apetitivo/fisiologia , Besouros/crescimento & desenvolvimento , Herbivoria , Larva/crescimento & desenvolvimento , Larva/fisiologia , Metaboloma , Raízes de Plantas/metabolismo , Zea mays/genética
3.
Curr Microbiol ; 81(8): 240, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910178

RESUMO

One Gram-negative, rod-shaped bacterial strain, isolated from an undescribed Heterorhabditis entomopathogenic nematode species was characterized to determine its taxonomic position. The 16S rRNA gene sequences indicate that it belongs to the class Gammaproteobacteria, to the family Morganellaceae, to the genus Photorhabdus, and likely represents a novel bacterial species. This strain, designated here as CRI-LCT, was therefore molecularly, biochemically, and morphologically characterized to describe the novel bacterial species. Phylogenetic reconstructions using 16S rRNA gene sequences show that CRI-LCT is closely related to P. laumondii subsp. laumondii TT01T and to P. laumondii subsp. clarkei BOJ-47T. The 16rRNA gene sequences between CRI-LCT and P. laumondii subsp. laumondii TT01T are 99.1% identical, and between CRI-LCT and P. laumondii subsp. clarkei BOJ-47T are 99.2% identical. Phylogenetic reconstructions using whole genome sequences show that CRI-LCT is closely related to P. laumondii subsp. laumondii TT01T and to P. laumondii subsp. clarkei BOJ-47T. Moreover, digital DNA-DNA hybridization (dDDH) values between CRI-LCT and its two relative species P. laumondii subsp. laumondii TT01T and P. laumondii subsp. clarkei BOJ-47T are 65% and 63%, respectively. In addition, we observed that average nucleotide identity (ANI) values between CRI-LCT and its two relative species P. laumondii subsp. laumondii TT01T and P. laumondii subsp. clarkei BOJ-47T are 95.8% and 95.5%, respectively. These values are below the 70% dDDH and the 95-96% ANI divergence thresholds that delimits prokaryotic species. Based on these genomic divergence values, and the phylogenomic separation, we conclude that CRI-LCT represents a novel bacterial species, for which we propose the name Photorhabdus africana sp. nov. with CRI-LCT (= CCM 9390T = CCOS 2112T) as the type strain. The following biochemical tests allow to differentiate P. africana sp. nov. CRI-LCT from other species of the genus, including its more closely related taxa: ß-Galactosidase, citrate utilization, urease and tryptophan deaminase activities, indole and acetoin production, and glucose and inositol oxidation. Our study contributes to a better understanding of the taxonomy and biodiversity of this important bacterial group with great biotechnological and agricultural potential.


Assuntos
DNA Bacteriano , Photorhabdus , Filogenia , RNA Ribossômico 16S , Photorhabdus/genética , Photorhabdus/classificação , Photorhabdus/isolamento & purificação , Animais , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Rhabditoidea/microbiologia , Rhabditoidea/genética , Rhabditoidea/classificação , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
4.
Artigo em Inglês | MEDLINE | ID: mdl-37171451

RESUMO

Six Gram-negative, rod-shaped bacterial strains isolated from Heterorhabditis amazonensis entomopathogenic nematodes were characterized to determine their taxonomic position. 16S rRNA and gyrB gene sequences indicate that they belong to the class Gammaproteobacteria, family Morganellaceae and genus Photorhabdus, and that some of them are conspecifics. Two of them, APURET and JART, were selected for further molecular characterization using whole genome- and whole-proteome-based phylogenetic reconstructions and sequence comparisons. Phylogenetic reconstructions using whole genome and whole proteome sequences show that strains APURET and JART are closely related to Photorhabdus luminescens subsp. luminescens ATCC 29999T and to P. luminescens subsp. mexicana MEX47-22T. Moreover, digital DNA-DNA hybridization (dDDH) values between APURET and P. luminescens subsp. luminescens ATCC 29999T, APURET and P. luminescens subsp. mexicana MEX47-22T, and APURET and JART are 61.6, 61.2 and 64.1 %, respectively. These values are below the 70 % divergence threshold that delimits prokaryotic species. dDDH scores between JART and P. luminescens subsp. luminescens ATCC 29999T and between JART and P. luminescens subsp. mexicana MEX47-22T are 71.9 and 74.8 %, respectively. These values are within the 70 and 79 % divergence thresholds that delimit prokaryotic subspecies. Based on these genomic divergence values, APURET and JART represent two different taxa, for which we propose the names: Photorhabdus aballayi sp. nov. with APURET (=CCM 9236T =CCOS 2019T) as type strain and Photorhabdus luminescens subsp. venezuelensis subsp. nov. with JART (=CCM 9235T =CCOS 2021T) as type strain. Our study contributes to a better understanding of the biodiversity of an important bacterial group with enormous biotechnological and agricultural potential.


Assuntos
Nematoides , Photorhabdus , Animais , Filogenia , RNA Ribossômico 16S/genética , Proteoma/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Ácidos Graxos/química , Nematoides/microbiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-37103464

RESUMO

Four Gram-negative bacterial strains isolated from Steinernema africanum entomopathogenic nematodes were biochemically and molecularly characterized to determine their taxonomic position. Results of 16S rRNA gene sequencing indicated that they belong to the class Gammaproteobacteria, family Morganellaceae, genus Xenorhabdus, and that they are conspecific. The average 16S rRNA gene sequence similarity between the newly isolated strains and the type strain of its more closely related species, Xenorhabdus bovienii T228T, is 99.4 %. We therefore selected only one of them, XENO-1T, for further molecular characterization using whole genome-based phylogenetic reconstructions and sequence comparisons. Phylogenetic reconstructions show that XENO-1T is closely related to the type strain of X. bovienii, T228T, and to several other strains that are thought to belong to this species. To clarify their taxonomic identities, we calculated average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values. We observed that the ANI and dDDH values between XENO-1T and X. bovienii T228T are 96.3 and 71.2 %, respectively, suggesting that XENO-1T represents a novel subspecies within the X. bovienii species. Noteworthy, the dDDH values between XENO-1T and several other X. bovienii strains are between 68.7 and 70.9 % and ANI values are between 95.8 and 96.4 %, which could be interpreted, in some instances, as that XENO-1T represents a new species. Considering that for taxonomic description the genomic sequences of the type strains are compared, and to avoid future taxonomic conflicts, we therefore propose to assign XENO-1T to a new subspecies within X. bovienii. ANI and dDDH values between XENO-1T and any other of the species with validly published names of the genus are lower than 96 and 70 %, respectively, supporting its novel status. Biochemical tests and in silico genomic comparisons show that XENO-1T exhibit a unique physiological profile that differs from all the Xenorhabdus species with validly published names and from their more closely related taxa. Based on this, we propose that strain XENO-1T represents a new subspecies within the X. bovienii species, for which we propose the name X. bovienii subsp. africana subsp. nov, with XENO-1T (=CCM 9244T=CCOS 2015T) as the type strain.


Assuntos
Rabditídios , Xenorhabdus , Animais , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Rabditídios/genética , Rabditídios/microbiologia , Hibridização de Ácido Nucleico , Nucleotídeos
6.
Curr Microbiol ; 80(9): 300, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493817

RESUMO

Three bacterial strains, XENO-2T, XENO-7T, and XENO-10T, isolated from Steinernema entomopathogenic nematodes, were found to represent novel Xenorhabdus species. In this study, we describe these new species by whole-genome and whole-proteome phylogenomic reconstructions, by calculating sequence identity scores using core genome sequences, and by phenotypic characterization. Phylogenomic reconstructions using ribosomal and house-keeping genes, and whole-genome and whole-proteome sequences show that XENO-2T and XENO-10T are closely related to Xenorhabdus japonica DSM 16522T and that XENO-7T is closely related to Xenorhabdus bovienii subsp. africana XENO-1T and to X. bovienii subsp. bovienii T228T. The dDDH values between XENO-2T and XENO-10T and between XENO-2T and X. japonica DSM 16522T are 56.4 and 51.8%, respectively. The dDDH value between XENO-10T and X. japonica DSM 16522T is 53.4%. The dDDH values between XENO-7T and X. bovienii subsp. africana XENO-1T and between XENO-7T and X. bovienii subsp. bovienii T228T are 63.6 and 69.4%, respectively. These dDDH values are below the 70% divergence threshold for prokaryotic species delineation. The newly described species are highly pathogenic to G. mellonella larvae, grow at pH between 5 and 9 (optimum 5-7), at salt concentrations of 1-3% (optimum 1-2%), and temperatures between 20 and 37 °C (optimum 28-30 °C). Biochemical tests such as lysine decarboxylase, ornithine decarboxylase, urease, gelatinase, citrate utilization, indole and acetoin production, and cytochrome oxidase tests allow to differentiate the novel species from their more closely related species. Considering these genetic and phenotypic divergencies, we propose the following new species: Xenorhabdus aichiensis sp. nov. with XENO-7T (= CCM 9233T = CCOS 2024T) as the type strain, Xenorhabdus anantnagensis sp. nov., with XENO-2T (= CCM 9237T = CCOS 2023T) as the type strain, and Xenorhabdus yunnanensis sp. nov., with XENO-10T (= CCM 9322T = CCOS 2071T) as the type strain. Our study contributes to a better understanding of the biodiversity and phylogenetic relationships of entomopathogenic bacteria associated with insect parasitic nematodes.


Assuntos
Rabditídios , Xenorhabdus , Animais , Filogenia , Proteoma/genética , Simbiose , RNA Ribossômico 16S/genética , Rabditídios/genética , Rabditídios/microbiologia , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Ácidos Graxos
7.
J Invertebr Pathol ; 199: 107953, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37336478

RESUMO

Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.


Assuntos
Nematoides , Animais , Nematoides/fisiologia , Insetos/parasitologia , Agricultura , Solo/parasitologia , Caenorhabditis elegans
8.
J Nematol ; 55(1): 20230029, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37455851

RESUMO

Three entomopathogenic nematode populations were isolated from agricultural fields in the Anantnag district of Jammu and Kashmir (India). Sequences of multiple gene regions and phenotypic features show that they are conspecific and represent a novel species. Molecular and morphological features provided evidence for placing the new species into the "Kushidai" clade. Within this clade, analysis of sequence data of the internal transcribed spacer (ITS) gene, the D2D3 region of the 28S rRNA gene, the mitochondrial cytochrome oxidase I (mtCOI) gene, and the mitochondrial 12S (mt12S) gene depicted the novel species as a distinctive entity closely related to Steinernema akhursti, S. kushidai, and S. populi. Phylogenetic analyses also show that the new species is a sister species to S. akhursti, and these two species are closely related to S. kushidai and S. populi. Additionally, the new species does not mate or produce fertile progeny with any of the closely related species, reinforcing its uniqueness from a biological species concept standpoint. The new species is further characterized by the third-stage infective juveniles with almost straight bodies (0.7-0.8 mm length), poorly developed stoma and pharynx, and conoid-elongate tail (49-66 µm) with hyaline posterior part. Adult females are characterized by short and conoid tails bearing a short mucron in the first generation and long conoid tails with thin mucron in the second generation. Adult males have ventrally curved spicules in both generations. Moreover, the first-generation male has rounded manubrium, fusiform gubernaculum, conoid and slightly ventrally curved tails with minute mucron, and the second generation has rhomboid manubrium anteriorly ventrad bent, and tails with long and robust mucron. The morphological, morphometrical, molecular, and phylogenetic analyses support the new species status of this nematode, which is hereby described as Steinernema anantnagense n. sp. The bacterial symbiont associated with S. anantnagense n. sp. represents a novel species, closely related to Xenorhabdus japonica. These findings shed light on the diversity of entomopathogenic nematodes and their symbiotic bacteria, providing valuable information for future studies in this field.

9.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36223180

RESUMO

One motile, Gram-negative, non-spore-forming and rod-shaped symbiotic bacterium, strain UCH-936T, was isolated from Heterorhabditis atacamensis nematodes. Results of biochemical, physiological, molecular and genomic analyses suggest that it represents a new species, which we propose to name Photorhabdus antumapuensis sp. nov. Digital DNA-DNA hybridization shows that strain UCH-936T is more closely related to Photorhabdus kleinii DSM 23513T, but shares solely 50.5 % similarity, which is below the 70% cut-off value that delimits species boundaries in bacteria. Phylogenetic reconstructions using whole-genome sequences show that strain UCH-936T forms a unique clade, suggesting its novel and distinct taxonomic status again. Similarly, comparative genomic analyses shows that the virulence factor flagella-related gene fleR, the type IV pili-related gene pilL and the vibriobactin-related gene vibE are present in the genome of strain UCH-936T but absent in the genomes of its closest relatives. Biochemically and physiologically, UCH-936T differs also from all closely related Photorhabdus species. Therefore, Photorhabdus antumapuensis sp. nov. is proposed as a new species with the type strain UCH-936T (CCCT 21.06T=CCM 9188T=CCOS 1991T).


Assuntos
Nematoides , Photorhabdus , Rhabditoidea , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Photorhabdus/genética , Filogenia , RNA Ribossômico 16S/genética , Rhabditoidea/microbiologia , Análise de Sequência de DNA , Fatores de Virulência
10.
Int Microbiol ; 25(1): 207-216, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34553287

RESUMO

Soil inhabiting organisms are important determinants of agroecosystem productivity. Understanding the composition, the abundance, and the type of interactions established by soil microorganisms is therefore crucial to design strategies to improve agricultural practices and agroecosystem management. In this study, we collected Zeldia punctata nematodes in maize fields in South Africa and profiled their associated bacterial communities using next-generation sequencing. We observed that Z. punctata nematodes establish associations with ecologically diverse bacterial species. The most abundant species observed are Pseudomonas syringae, a phytopathogenic bacterial complex; Lactobacillus paraplantarum, a broadly distributed bacterial species that is present in soils, water bodies, and animal intestinal tracts and has certain probiotic and antimicrobial properties; and Melissococcus plutonius, a serious pathogenic bacterial species that causes brood disease in honeybees. Our study contributes to a better understanding of the soil bacterial communities associated with nematodes in maize agricultural soils in South Africa and unravels the presence of diverse detrimental and beneficial nematode-associated bacteria.


Assuntos
Nematoides , Solo , Agricultura , Animais , Bactérias/genética , Microbiologia do Solo
11.
J Chem Ecol ; 48(1): 71-78, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738202

RESUMO

Most known species of entomopathogenic nematodes (EPNs) are generalist obligate parasites of insects. They kill their hosts within days after infection and mortality is mainly caused by toxins produced by bacteria that co-infect the hosts and serve as food for the nematodes. EPNs can infect a very broad spectrum of insects and these insects can therefore be expected to have evolved strategies to avoid infection. Indeed, ants are known to avoid feeding on EPN-infected insect cadavers, most likely because they are repelled by semiochemicals that emanate from the cadavers. The source and nature of these repellents are so far unknown. In a series of behavioral and chemical analytical experiments we identified hexadecanal and 2-heptadecanone as two compounds that are emitted by insect larva that are infected by the EPN Steinernema feltiae, but not by uninfected larvae. When spiking honey water with the two semiochemicals, they were confirmed to be highly deterrent to the ant Lasius niger. The environmentally benign hexadecanal and 2-heptadecanone could be employed to ward off ants and possibly other pests. Additional experiments are needed to fully determine their application potential.


Assuntos
Formigas , Rabditídios , Animais , Cadáver , Insetos , Larva , Controle Biológico de Vetores
12.
Proc Natl Acad Sci U S A ; 116(46): 23174-23181, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659056

RESUMO

Plants defend themselves against herbivores through the production of toxic and deterrent metabolites. Adapted herbivores can tolerate and sometimes sequester these metabolites, allowing them to feed on defended plants and become toxic to their own enemies. Can herbivore natural enemies overcome sequestered plant defense metabolites to prey on adapted herbivores? To address this question, we studied how entomopathogenic nematodes cope with benzoxazinoid defense metabolites that are produced by grasses and sequestered by a specialist maize herbivore, the western corn rootworm. We find that nematodes from US maize fields in regions in which the western corn rootworm was present over the last 50 y are behaviorally and metabolically resistant to sequestered benzoxazinoids and more infective toward the western corn rootworm than nematodes from other parts of the world. Exposure of a benzoxazinoid-susceptible nematode strain to the western corn rootworm for 5 generations results in higher behavioral and metabolic resistance and benzoxazinoid-dependent infectivity toward the western corn rootworm. Thus, herbivores that are exposed to a plant defense sequestering herbivore can evolve both behavioral and metabolic resistance to plant defense metabolites, and these traits are associated with higher infectivity toward a defense sequestering herbivore. We conclude that plant defense metabolites that are transferred through adapted herbivores may result in the evolution of resistance in herbivore natural enemies. Our study also identifies plant defense resistance as a potential target for the improvement of biological control agents.


Assuntos
Benzoxazinas/metabolismo , Besouros/parasitologia , Herbivoria , Interações Hospedeiro-Parasita , Rabditídios/fisiologia , Animais , Besouros/metabolismo , Cadeia Alimentar , Zea mays
13.
Chimia (Aarau) ; 76(11): 945-953, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069790

RESUMO

Nematodes represent the most abundant group of metazoans on earth. They utilize diverse chemicals to interact with con-specific and hetero-specific organisms, and are also impacted by compounds produced by other interacting organisms. In the first part of this review we discuss how nematode-derived glycolipids modulate their behavior and development, as well as the interactions with other organisms. Furthermore, we provide a short overview about other secondary metabolites produced by nematodes that affect different life traits of free-living nematodes. In the second part of this review we discuss how different bacteria-, nematode-, and plant-derived chemicals such as volatile organic compounds, root exudates, and plant defenses regulate the interaction between entomopathogenic nematodes, their symbiotic bacteria, insect prey, predators, and plants.

14.
J Nematol ; 54(1): 20220049, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36457370

RESUMO

Alternatives to hazardous insecticides are urgently needed for an environmentally friendly and effective management of insect pests. One such option is the use of entomopathogenic nematodes (EPN). To increase the availability of EPN with potential for biocontrol, we surveyed agricultural soils in the Republic of Rwanda and collected two Steinernema isolates. Initial molecular characterization showed that they represent a new species, for which we propose the name S. africanum n. sp. To describe this new species, we reconstructed phylogenetic relationships, calculated sequence similarity scores, characterized the nematodes at the morphological level, conducted crossing experiments, and isolated and characterized their symbiotic bacteria. At the molecular level, S. africanum n. sp. is closely related to S. litorale and S. weiseri. At the morphological level, S. africanum n. sp. differs from closely related species by the position of the nerve ring and also because the stoma and pharynx region is longer. The first-generation males have ventrally curved spicules with lanceolate manubrium and fusiform gubernaculum and the second-generation males have rounded manubrium and anteriorly hook-like gubernaculum. Steinernema africanum n. sp. does not mate or produce fertile progeny with any of the closely related species.

15.
Plant Cell Environ ; 44(8): 2672-2686, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33748996

RESUMO

Plant leaves that are exposed to herbivore-induced plant volatiles (HIPVs) respond by increasing their defenses, a phenomenon referred to as priming. Whether this phenomenon also occurs in the roots is unknown. Using maize plants, Zea mays, whose leaves respond strongly to leaf HIPVs, we measured the impact of belowground HIPVs, emanating from roots infested by the banded cucumber beetle, Diabrotica balteata, on constitutive and herbivore-induced levels of defense-related gene expression, phytohormones, volatile and non-volatile primary and secondary metabolites, growth and herbivore resistance in roots of neighbouring plants. HIPV exposure did not increase constitutive or induced levels of any of the measured root traits. Furthermore, HIPV exposure did not reduce the performance or survival of D. balteata on maize or its ancestor teosinte. Cross-exposure experiments between HIPVs from roots and leaves revealed that maize roots, in contrast to maize leaves, neither emit nor respond strongly to defense-regulating HIPVs. Together, these results demonstrate that volatile-mediated defense regulation is restricted to the leaves of maize. This finding is in line with the lower diffusibility of volatiles in the soil and the availability of other, potentially more efficient, information conduits below ground.


Assuntos
Herbivoria , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Zea mays/fisiologia , Animais , Besouros/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-34524954

RESUMO

Two Gram-negative, rod-shaped bacteria, H1T and H3T, isolated from the digestive tract of Heterorhabditis entomopathogenic nematodes were biochemically and molecularly characterized to determine their taxonomic positions. The 16S rRNA gene sequences of these strains indicate that they belong to the Gammaproteobacteria, to the family Morganellaceae, and to the Photorhabdus genus. Deeper analyses using whole genome-based phylogenetic reconstructions show that strains H1T and H3T are closely related to P. akhurstii DSM 15138T, to P. hainanensis DSM 22397T, and to P. namnaonensis PB45.5T. In silico genomic comparisons confirm these observations and show that strain H1T shares 70.6, 66.8, and 63.5 % digital DNA-DNA hybridization (dDDH) with P. akhurstii DSM 15138T, P. hainanensis DSM 22397T, and P. namnaonensis PB45.5T, respectively, and that strain H3T shares 76.6, 69.4, and 59.2 % dDDH with P. akhurstii DSM 15138T, P. hainanensis DSM 22397T, and P. namnaonensis PB45.5T, respectively. Physiological and biochemical characterization reveals that these two strains differ from most of the validly described Photorhabdus species and from their more closely related taxa. Given the clear phylogenetic separations, that the threshold to discriminate species and subspecies is 70 and 79% dDDH, respectively, and that strains H1T and H3T differ physiologically and biochemically from their more closely related taxa, we propose to classify H1T and H3T into new taxa as follows: H3T as a new subspecies within the species P. akhurstii, and H1T as a new species within the Photorhabdus genus, in spite that H1T shares 70.6 % dDDH with P. akhurstii DSM 15138T, score that is slightly higher than the 70 % threshold that delimits species boundaries. The reason for this is that H1T and P. akhurstii DSM 15138T cluster apart in the phylogenetic trees and that dDDH scores between strain H1T and other P. akhurstii strains are lower than 70 %. Hence, the following names are proposed: Photorhabdus hindustanensis sp. nov. with the type strain H1T (=IARI-SGMG3T,=KCTC 82683T=CCM 9150T=CCOS 1975T) and P. akhurstii subsp. bharatensis subsp. nov. with the type strain H3T (=IARI-SGHR2T=KCTC 82684T=CCM 9149T=CCOS 1976T). These propositions automatically create P. akhurstii subsp. akhurstii subsp. nov. with DSM 15138T as the type strain (currently classified as P. akhurstii).


Assuntos
Nematoides , Photorhabdus , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Photorhabdus/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Artigo em Inglês | MEDLINE | ID: mdl-33464198

RESUMO

Three Gram-stain-negative, rod-shaped, non-spore-forming bacteria, BA1T, Q614T and PB68.1T, isolated from the digestive system of Heterorhabditis entomopathogenic nematodes, were biochemically and molecularly characterized to clarify their taxonomic affiliations. The 16S rRNA gene sequences of these strains suggest that they belong to the Gammaproteobacteria, to the family Morganellacea, and to the genus Photorhabdus. Deeper analyses using whole genome-based phylogenetic reconstructions suggest that BA1T is closely related to Photorhabdus akhursti, that Q614T is closely related to Photorhabdus heterorhabditis, and that PB68.1T is closely related to Photorhabdus australis. In silico genomic comparisons confirm these observations: BA1T and P. akhursti 15138T share 68.8 % digital DNA-DNA hybridization (dDDH), Q614T and P. heterorhabditis SF41T share 75.4 % dDDH, and PB68.1T and P. australis DSM 17609T share 76.6  % dDDH. Physiological and biochemical characterizations reveal that these three strains also differ from all validly described Photorhabdus species and from their more closely related taxa, contrary to what was previously suggested. We therefore propose to classify BA1T as a new species within the genus Photorhabdus, Q614T as a new subspecies within P. heterorhabditis, and PB68.1T as a new subspecies within P. australis. Hence, the following names are proposed for these strains: Photorhabdus aegyptia sp. nov. with the type strain BA1T(=DSM 111180T=CCOS 1943T=LMG 31957T), Photorhabdus heterorhabditis subsp. aluminescens subsp. nov. with the type strain Q614T (=DSM 111144T=CCOS 1944T=LMG 31959T) and Photorhabdus australis subsp. thailandensis subsp. nov. with the type strain PB68.1T (=DSM 111145T=CCOS 1942T). These propositions automatically create Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov. with SF41T as the type strain (currently classified as P. heterorhabditis) and Photorhabdus australis subsp. australis subsp. nov. with DSM17609T as the type strain (currently classified as P. australis).


Assuntos
Nematoides/microbiologia , Photorhabdus/classificação , Filogenia , Animais , Austrália , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Sistema Digestório/microbiologia , Egito , Hibridização de Ácido Nucleico , Photorhabdus/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tailândia
18.
J Chem Ecol ; 47(10-11): 889-906, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34415498

RESUMO

How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.


Assuntos
Mudança Climática , Besouros/fisiologia , Cadeia Alimentar , Strongyloidea/fisiologia , Zea mays/fisiologia , Animais , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Zea mays/crescimento & desenvolvimento
19.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-34790901

RESUMO

Species of the nematode genus Heterorhabditis are important biological control agents against agricultural pests. The taxonomy of this group is still unclear as it currently relies on phylogenetic reconstructions based on a few genetic markers with little resolutive power, specially of closely related species. To fill this knowledge gap, we sequenced several phylogenetically relevant genetic loci and used them to reconstruct phylogenetic trees, to calculate sequence similarity scores, and to determine signatures of species- and population-specific genetic polymorphism. In addition, we revisited the current literature related to the description, synonymisation, and declaration as species inquirendae of Heterorhabditis species to compile taxonomically relevant morphological and morphometric characters, characterized new nematode isolates at the morphological and morphometrical level, and conducted self-crossing and cross-hybridization experiments. The results of this study show that the sequences of the mitochondrial cytochrome C oxidase subunit I (COI) gene provide better phylogenetic resolutive power than the sequences of nuclear rRNA genes and that this gene marker can phylogenetically resolve closely related species and even populations of the same species with high precision. Using this gene marker, we found two new species, Heterorhabditis ruandica n. sp. and Heterorhabditis zacatecana n. sp. A detailed characterization of these species at the morphological and morphometric levels and nematode reproduction assays revealed that the threshold for species delimitation in this genus, using COI sequences, is 97% to 98%. Our study illustrates the importance of rigorous morphological and morphometric characterization and multi-locus sequencing for the description of new species within the genus Heterorhabditis, serves to clarify the phylogenetic relationships of this important group of biological control agents, and can inform future species descriptions to advance our efforts towards developing more tools for sustainable and environmentally friendly agriculture.

20.
Microbiology (Reading) ; 166(6): 522-530, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301690

RESUMO

Species of the bacterial genus Photorhabus live in a symbiotic relationship with Heterorhabditis entomopathogenic nematodes. Besides their use as biological control agents against agricultural pests, some Photorhabdus species are also a source of natural products and are of medical interest due to their ability to cause tissue infections and subcutaneous lesions in humans. Given the diversity of Photorhabdus species, rapid and reliable methods to resolve this genus to the species level are needed. In this study, we evaluated the potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of Photorhabdus species. To this end, we established a collection of 54 isolates consisting of type strains and multiple field strains that belong to each of the validly described species and subspecies of this genus. Reference spectra for the strains were generated and used to complement a currently available database. The extended reference database was then used for identification based on the direct transfer sample preparation method and the protein fingerprint of single colonies. High-level discrimination of distantly related species was observed. However, lower discrimination was observed with some of the most closely related species and subspecies. Our results therefore suggest that MALDI-TOF MS can be used to correctly identify Photorhabdus strains at the genus and species level, but has limited resolution power for closely related species and subspecies. Our study demonstrates the suitability and limitations of MALDI-TOF-based identification methods for assessment of the taxonomic position and identification of Photorhabdus isolates.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Photorhabdus/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , Photorhabdus/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA