Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Mol Diagn ; 26(3): 168-178, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38103591

RESUMO

Next-generation sequencing (NGS)-based measurable residual disease (MRD) monitoring in post-treatment settings can be crucial for relapse risk stratification in patients with B-cell and plasma cell neoplasms. Prior studies have focused on validation of various technical aspects of the MRD assays, but more studies are warranted to establish the performance characteristics and enable standardization and broad utilization in routine clinical practice. Here, the authors describe an NGS-based IGH MRD quantification assay, incorporating a spike-in calibrator for monitoring B-cell and plasma cell neoplasms based on their unique IGH rearrangement status. Comparison of MRD status (positive or undetectable) by NGS and flow cytometry (FC) assays showed high concordance (91%, 471/519 cases) and overall good linear correlation in MRD quantitation, particularly for chronic lymphocytic leukemia and B-lymphoblastic leukemia/lymphoma (R = 0.85). Quantitative correlation was lower for plasma cell neoplasms, where underestimation by FC is a known limitation. No significant effects on sequencing efficiency by the spike-in calibrator were observed, with excellent inter- and intra-assay reproducibility within the authors' laboratory, and in comparison to an external laboratory, using the same assay and protocols. Assays performed both at internal and external laboratories showed highly concordant MRD detection (100%) and quantitation (R = 0.97). Overall, this NGS-based MRD assay showed highly reproducible results with quantitation that correlated well with FC MRD assessment, particularly for B-cell neoplasms.


Assuntos
Leucemia Linfocítica Crônica de Células B , Mieloma Múltiplo , Humanos , Reprodutibilidade dos Testes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética
2.
J Mol Diagn ; 25(6): 352-366, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36963483

RESUMO

Somatic hypermutation status of the IGHV gene is essential for treating patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Unlike the conventional low-throughput method, assessment of somatic hypermutation by next-generation sequencing (NGS) has potential for uniformity and scalability. However, it lacks standardization or guidelines for routine clinical use. We critically assessed the performance of an amplicon-based NGS assay across 458 samples. Using a validation cohort (35 samples), the comparison of two platforms (Ion Torrent versus Illumina) and two primer sets [leader versus framework region 1 (FR1)] in their ability to identify clonotypic IGHV rearrangement(s) revealed 97% concordance. The mutation rates were identical by both platforms when using the same primer set (FR1), whereas a slight overestimation bias (+0.326%) was found when comparing FR1 with leader primers. However, for nearly all patients this did not affect the stratification into mutated or unmutated categories, suggesting that use of FR1 may provide comparable results if leader sequencing is not available and allowing for a simpler NGS laboratory workflow. In routine clinical practice (423 samples), the productive rearrangement was successfully detected by either primer set (leader, 97.7%; FR1, 94.7%), and a combination of both in problematic cases reduced the failure rate to 1.2%. Higher sensitivity of the NGS-based analysis also detected a higher frequency of double IGHV rearrangements (19.1%) compared with traditional approaches.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma de Células B , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Rearranjo Gênico , Linfoma de Células B/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
J Mol Diagn ; 23(2): 181-199, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217553

RESUMO

The 2016 International Myeloma Working Group consensus recommendations emphasize high-sensitivity methods for minimal residual disease (MRD) detection, treatment response assessment, and prognostication. Next-generation sequencing (NGS) of IGH gene rearrangements is highly specific and sensitive, but its description in routine clinical practice and performance comparison with high-sensitivity flow cytometry (hsFC) remain limited. In this large, single-institution study including 438 samples from 251 patients, the use of NGS targeting the IGH and IGK genes for clonal characterization and monitoring, with comparison to hsFC, is described. The index clone characterization success rate was 93.6% (235/251), which depended on plasma cell (PC) cellularity, reaching 98% when PC ≥10% and below 80% when PC <5%. A total of 85% of cases were successfully characterized using leader and FR1 primer sets, and most clones showed high somatic hypermutation rates (median, 8.1%). Among monitoring samples from 124 patients, 78.6% (147/187) had detectable disease by NGS. Concordance with hsFC was 92.9% (170/183). Discordant cases encompassed 8 of 124 hsFC MRD+/NGS MRD- patients (6.5%) and 4 of 124 hsFC MRD-/NGS MRD+ patients (3.2%), all with low-level disease near detection limits for both assays. Among concordant hsFC MRD-/NGS MRD- cases, only 5 of 24 patients (20.8%) showed subsequent overt relapse at 3-year follow-up. HsFC and NGS showed similar operational sensitivity, and the choice of test may depend on practical, rather than test performance, considerations.


Assuntos
Células Clonais/patologia , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Mieloma Múltiplo/diagnóstico , Neoplasia Residual/diagnóstico , Sequência de Bases , Estudos de Viabilidade , Humanos , Plasmócitos/patologia , Recidiva , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
J Mol Diagn ; 21(2): 330-342, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30590126

RESUMO

Immunoglobulin heavy chain (IGH) clonality testing by next-generation sequencing (NGS) offers unique advantages over current low-throughput methods in the assessment of B-cell lineage neoplasms. Clinical use remains limited because assays are not standardized and validation/implementation guidelines are not yet developed. Herein, we describe our clinical validation and implementation of NGS IGH clonality testing and summarize our experience based on extensive routine use. NGS-based clonality testing targeting IGH FR1, FR2, FR3, and the conserved leader sequence upstream of FR1 was validated using commercially available kits. Data were analyzed by commercial and in-house-developed bioinformatics pipelines. Performance characteristics were evaluated directly comparing with capillary electrophoresis (CE) assays (BIOMED-2 primers). Assays were monitored after implementation (>1.5 years), concurrently testing by CE methods. A total of 1189 clinical samples were studied (94 validation, 1095 postimplementation). NGS showed superior performance compared with CE assays. For initial assessment, clonality detection rate was >97% for all malignancy types. Concordance with CE was 96%; discordances were related to higher sensitivity/resolution of NGS and improved detection in cases with high somatic hypermutation. Routine NGS clonality assessment is feasible and superior to existing assays, enabling accurate and specific index clone assessment and future tracking of all rearrangements in a patient sample. Successful implementation requires new standardization, validation, and implementation processes, which should be performed as a multicenter and multidisciplinary collaboration.


Assuntos
Linfócitos B/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Cadeias Pesadas de Imunoglobulinas/análise , Neoplasias de Plasmócitos/metabolismo , Eletroforese Capilar , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA