RESUMO
We generate a tabletop pulsed relativistic electron beam at 100 Hz repetition rate from vacuum laser acceleration by tightly focusing a radially polarized beam into a low-density gas. We demonstrate that strong longitudinal electric fields at the focus can accelerate electrons up to 1.43 MeV by using only 98 GW of peak laser power. The electron energy is measured as a function of laser intensity and gas species, revealing a strong dependence on the atomic ionization dynamics. These experimental results are supported by numerical simulations of particle dynamics in a tightly focused configuration that take ionization into consideration. For the range of intensities considered, it is demonstrated that atoms with higher atomic numbers like krypton can favorably inject electrons at the peak of the laser field, resulting in higher energies and an efficient acceleration mechanism that reaches a significant fraction (≈14%) of the theoretical energy gain limit.
RESUMO
A comparative study of three different tight-focusing schemes for high-power lasers is performed numerically. Using the Stratton-Chu formulation, the electromagnetic field in the vicinity of the focus is evaluated for a short-pulse laser beam incident upon an on-axis high numerical aperture parabola (HNAP), an off-axis parabola (OAP), and a transmission parabola (TP). Linearly- and radially-polarized incident beams are considered. It is demonstrated that while all the focusing configurations yield intensities above 1023 W/cm2 for a 1 PW incident beam, the nature of the focused field can be drastically modified. In particular, it is shown that the TP, with its focal point behind the parabola, actually converts an incoming linearly-polarized beam into an m = 2 vector beam. The strengths and weaknesses of each configuration are discussed in the context of future laser-matter interaction experiments. Finally, a generalization of NA calculations up to 4π-illumination is proposed through the solid angle formulation, providing a universal way to compare light cones from any kind of optics.
RESUMO
This Letter demonstrates control over multiphoton absorption processes in driven two-level systems, which include, for example, superconducting qubits or laser-irradiated graphene, through spectral shaping of the driving pulse. Starting from calculations based on Floquet theory, we use differential evolution, a general purpose optimization algorithm, to find the Fourier coefficients of the driving function that suppress a given multiphoton resonance in the strong field regime. We show that the suppression of the transition probability is due to the coherent superposition of high-order Fourier harmonics which closes the dynamical gap between the Floquet states of the two-level system.
RESUMO
Despite high demand for gold film nanostructuring, patterning gold at the nanoscale still presents considerable challenges for current foundry-compatible processes. Here, we present a method based on abrasive-free chemical mechanical planarization (CMP) to planarize nanostructured gold surfaces with high selectivity against SiO2. The method is efficient in a damascene process and industry-compatible. Investigations into the material removal mechanism explore the effects of CMP parameters and show that the material removal rate is highly tunable with changes in slurry composition. Millimeter-scale arrays of gold nanostructures embedded in SiO2 were fabricated and the planarization dynamics were monitored over time, leading to the identification of distinct planarization phases and their correlation with the material removal mechanism. Finally, plasmonic cavities of gold nanostructure arrays over a gold mirror were fabricated. The cavities exhibited efficient plasmonic resonance in the visible range, aligning well with simulation results.
RESUMO
The dynamics of low-energy electrons in general static strained graphene surface is modelled mathematically by the Dirac equation in curved space-time. In Cartesian coordinates, a parametrization of the surface can be straightforwardly obtained, but the resulting Dirac equation is intricate for general surface deformations. Two different strategies are introduced to simplify this problem: the diagonal metric approximation and the change of variables to isothermal coordinates. These coordinates are obtained from quasiconformal transformations characterized by the Beltrami equation, whose solution gives the mapping between both coordinate systems. To implement this second strategy, a least-squares finite-element numerical scheme is introduced to solve the Beltrami equation. The Dirac equation is then solved via an accurate pseudospectral numerical method in the pseudo-Hermitian representation that is endowed with explicit unitary evolution and conservation of the norm. The two approaches are compared and applied to the scattering of electrons on Gaussian shaped graphene surface deformations. It is demonstrated that electron wave packets can be focused by these local strained regions.
RESUMO
A class of explicit numerical schemes is developed to solve for the relativistic dynamics and spin of particles in electromagnetic fields, using the Lorentz-Bargmann-Michel-Telegdi equation formulated in the Clifford algebra representation of Baylis. It is demonstrated that these numerical methods, reminiscent of the leapfrog and Verlet methods, share a number of important properties: they are energy conserving, volume conserving, and second-order convergent. These properties are analyzed empirically by benchmarking against known analytical solutions in constant uniform electrodynamic fields. It is demonstrated that the numerical error in a constant magnetic field remains bounded for long-time simulations in contrast to the Boris pusher, whose angular error increases linearly with time. Finally, the intricate spin dynamics of a particle is investigated in a plane-wave field configuration.
RESUMO
Photo-induced transition probabilities in graphene are studied theoretically from the viewpoint of Floquet theory. Conduction band populations are computed for a strongly, periodically driven graphene sheet under linear, circular, and elliptic polarization. Features of the momentum spectrum of excited quasi-particles can be directly related to the avoided crossing of the Floquet quasi-energy levels. In particular, the impact of the ellipticity and the strength of the laser excitation on the avoided crossing structure-and on the resulting transition probabilities-is studied. It is shown that the ellipticity provides an additional control parameter over the phenomenon of coherent destruction of tunneling in graphene, allowing one to selectively suppress multiphoton resonances.