Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 12(2): e1005823, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26828939

RESUMO

The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique platform to explore these possibilities.


Assuntos
Adaptação Fisiológica , Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição GATA/metabolismo , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Animais , Núcleo Celular/metabolismo , Sobrevivência Celular , Sequência Conservada , Sistema Digestório/metabolismo , Regulação da Expressão Gênica , Resposta ao Choque Térmico/genética , Mutação/genética , Estresse Oxidativo , Dobramento de Proteína , Subunidades Proteicas/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico , Ubiquitina/metabolismo
2.
Bull Environ Contam Toxicol ; 94(2): 135-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25528272

RESUMO

Although songbirds accumulate mercury at rates equivalent to better-studied aquatic avian species, effects of mercury bioaccumulation in songbirds remain understudied. Little is known about the effects of mercury on endocrine physiology, but recent evidence indicates that mercury may disrupt the function of the hypothalamic-pituitary-adrenal axis. Both field-based correlational studies and a recent dosing experiment suggest that mercury exposure alters levels of the primary avian stress hormone, CORT. We sampled zebra finches that had been dosed with 0, 0.5, or 1.0 ppm dietary methylmercury for baseline CORT twice; once during pairing and once after successfully fledging young. Circulating levels of CORT were not significantly affected by mercury exposure. However, our findings indicate potentially important differences in CORT responses between the sexes when exposed to environmentally relevant doses of mercury across the nesting cycle.


Assuntos
Corticosterona/sangue , Poluentes Ambientais/toxicidade , Tentilhões/fisiologia , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Animais , Cruzamento , Feminino , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Reprodução/efeitos dos fármacos
3.
Cell Host Microbe ; 31(4): 554-570.e7, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36996818

RESUMO

Disruptions to the intestinal microbiome during weaning lead to negative effects on host immune function. However, the critical host-microbe interactions during weaning that are required for immune system development remain poorly understood. We find that restricting microbiome maturation during weaning stunts immune system development and increases susceptibility to enteric infection. We developed a gnotobiotic mouse model of the early-life microbiome Pediatric Community (PedsCom). These mice develop fewer peripheral regulatory T cells and less IgA, hallmarks of microbiota-driven immune system development. Furthermore, adult PedsCom mice retain high susceptibility to Salmonella infection, which is characteristic of young mice and children. Altogether, our work illustrates how the post-weaning transition in microbiome composition contributes to normal immune maturation and protection from infection. Accurate modeling of the pre-weaning microbiome provides a window into the microbial requirements for healthy development and suggests an opportunity to design microbial interventions at weaning to improve immune development in human infants.


Assuntos
Microbioma Gastrointestinal , Microbiota , Lactente , Adulto , Animais , Humanos , Camundongos , Criança , Vida Livre de Germes , Desmame , Sistema Imunitário
4.
Cancer Res ; 76(4): 773-86, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26676752

RESUMO

Aberrant signaling through cytokine receptors and their downstream signaling pathways is a major oncogenic mechanism underlying hematopoietic malignancies. To better understand how these pathways become pathologically activated and to potentially identify new drivers of hematopoietic cancers, we developed a high-throughput functional screening approach using ex vivo mutagenesis with the Sleeping Beauty transposon. We analyzed over 1,100 transposon-mutagenized pools of Ba/F3 cells, an IL3-dependent pro-B-cell line, which acquired cytokine independence and tumor-forming ability. Recurrent transposon insertions could be mapped to genes in the JAK/STAT and MAPK pathways, confirming the ability of this strategy to identify known oncogenic components of cytokine signaling pathways. In addition, recurrent insertions were identified in a large set of genes that have been found to be mutated in leukemia or associated with survival, but were not previously linked to the JAK/STAT or MAPK pathways nor shown to functionally contribute to leukemogenesis. Forced expression of these novel genes resulted in IL3-independent growth in vitro and tumorigenesis in vivo, validating this mutagenesis-based approach for identifying new genes that promote cytokine signaling and leukemogenesis. Therefore, our findings provide a broadly applicable approach for classifying functionally relevant genes in diverse malignancies and offer new insights into the impact of cytokine signaling on leukemia development.


Assuntos
Carcinogênese/genética , Transformação Celular Neoplásica/genética , Leucemia/genética , Animais , Humanos , Leucemia/patologia , Camundongos , Mutagênese , Transdução de Sinais
5.
PLoS One ; 10(8): e0135567, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26267274

RESUMO

Development of a cytomegalovirus (CMV) vaccine is a major public health priority due to the risk of congenital infection. A key component of a vaccine is thought to be an effective neutralizing antibody response against the viral glycoproteins necessary for cell entry. Species specificity of human CMV (HCMV) precludes direct studies in an animal model. The guinea pig is the only small animal model for congenital cytomegalovirus infection. Analysis of the guinea pig CMV (GPCMV) genome indicates that it potentially encodes homologs to the HCMV glycoproteins (including gB, gH, gL, gM, gN and gO) that form various cell entry complexes on the outside of the virus: gCI (gB); gCII (gH/gL/gO); gCIII (gM/gN). The gB homolog (GP55) has been investigated as a candidate subunit vaccine but little is known about the other homolog proteins. GPCMV glycoproteins were investigated by transient expression studies which indicated that homolog glycoproteins to gN and gM, or gH, gL and gO were able to co-localize in cells and generate respective homolog complexes which could be verified by immunoprecipitation assays. ELISA studies demonstrated that the individual complexes were highly immunogenic in guinea pigs. The gO (GP74) homolog protein has 13 conserved N-glycosylation sites found in HCMV gO. In transient expression studies, only the glycosylated protein is detected but in virus infected cells both N-glycosylated and non-glycosylated gO protein were detected. In protein interaction studies, a mutant gO that lacked N-glycosylation sites had no impact on the ability of the protein to interact with gH/gL which indicated a potential alternative function associated with these sites. Knockout GPCMV BAC mutagenesis of the respective glycoprotein genes (GP55 for gB, GP75 for gH, GP115 for gL, GP100 for gM, GP73 for gN and GP74 for gO) in separate reactions was lethal for virus regeneration on fibroblast cells which demonstrated the essential nature of the GPCMV glycoproteins. The gene knockout results were similar to HCMV, except in the case of the gO homolog, which was non-essential in epithelial tropic virus but essential in lab adapted GPCMV. Overall, the findings demonstrate the similarity between HCMV and GPCMV glycoproteins and strengthen the relevance of this model for development of CMV intervention strategies.


Assuntos
Citomegalovirus/metabolismo , Glicoproteínas/metabolismo , Proteínas Virais/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Cobaias , Imunoprecipitação , Mutação/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas do Envelope Viral/metabolismo
6.
Environ Toxicol Chem ; 33(5): 1072-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24436046

RESUMO

Mercury can disrupt the endocrine systems of mammals and fish, but little is known about its effects on avian hormones. The authors employed an experimental manipulation to show that methylmercury suppresses the stress-induced corticosterone response in birds, an effect previously unreported in the literature. Corticosterone regulates many normal metabolic processes, such as the maintenance of proper blood glucose levels during stressful daily fasting; an inability to increase corticosterone levels in response to stressors renders a bird less able to face a wide array of environmental challenges. The authors studied reproductively mature zebra finches that had been exposed to 0.0 µg/g, 0.3 µg/g, 0.6 µg/g, 1.2 µg/g, or 2.4 µg/g (wet wt) dietary methylmercury throughout their life (i.e., from the egg onward). In contrast to some field studies, the present study found no significant change in baseline plasma corticosterone concentrations attributable to chronic methylmercury exposure. However, a comparison between the baseline corticosterone levels and levels after 30 min of handling stress revealed that the ability of birds to mount a stress response was reduced with increasing blood total mercury concentration. These results are consistent with adrenal corticoid disruption caused by chronic mercury exposure and mirror a similar study on free-living nestling songbirds exposed to environmental mercury.


Assuntos
Corticosterona/sangue , Tentilhões/sangue , Compostos de Metilmercúrio/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Animais , Feminino , Masculino , Compostos de Metilmercúrio/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA