Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 293: 118564, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838711

RESUMO

Land application of sewage sludge is increasingly used as an alternative to landfilling and incineration owing to a considerable content of carbon and essential plant nutrients in sewage sludge. However, the presence of chemical and biological contaminants in sewage sludge poses potential dangers; therefore, sewage sludge must be suitably treated before being applied to soils. The most common methods include anaerobic digestion, aerobic composting, lime stabilization, incineration, and pyrolysis. These methods aim at stabilizing sewage sludge, to eliminate its potential environmental pollution and restore its agronomic value. To achieve best results on land, a comprehensive understanding of the transformation of organic matter, nutrients, and contaminants during these sewage-sludge treatments is essential; however, this information is still lacking. This review aims to fill this knowledge gap by presenting various approaches to treat sewage sludge, transformation processes of some major nutrients and pollutants during treatment, and potential impacts on soils. Despite these treatments, overtime there are still some potential risks of land application of treated sewage sludge. Potentially toxic substances remain the main concern regarding the reuse of treated sewage sludge on land. Therefore, further treatment may be applied, and long-term field studies are warranted, to prevent possible adverse effects of treated sewage sludge on the ecosystem and human health and enable its land application.


Assuntos
Ecossistema , Esgotos , Poluição Ambiental , Humanos , Incineração , Solo
2.
Environ Pollut ; 288: 117676, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265555

RESUMO

Recently, the adsorption-based environmental remediation techniques have gained a considerable attention, due to their economic viability and simplicity over other methods. Hence, detailed presentation and analysis were herein focused on describing the role of biochar in oil spill removal. Oil removal by utilizing biochar is assumed as a green-oriented concept. Biochar is a carbon-rich low-cost material with high porosity and specific surface chemistry, with a tremendous potentiality for oil removal from aqueous solutions. Oil sorption properties of biochar mainly depend on the biochar production/synthesis method, and the biomass feedstock type. In order to preserve the stability of functional groups in the structure, biochar needs to be produced/activated at low temperatures (<700 ᵒC). In general, biochar derived from biomass containing high lignin content via slow pyrolysis is more favorable for oil removal. Exceptional characteristics of biochar which intensify the oil removal capability such as hydrophobicity, oleophilicity or/and specific contaminant-surface interaction of biochar can be enhanced and be tuned by chemical and physical activation methods. Considering all the presented results, future perspectives such as the examination of biochar efficacy on oil removal efficiency in multi-element contaminated aqueous solutions to identify the best biomass feedstocks, the production protocols and large-scale field trials, are also discussed.


Assuntos
Poluição por Petróleo , Adsorção , Carvão Vegetal , Pirólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA