RESUMO
Herein we describe one-dimensional electron-spin arrays consisting of two different organic radicals with the designed arrangement based on the DNA sequence. Two mismatch-binding ligands carrying 2,2,6,6-tetramethylpiperidine N-oxide (TEMPO) and nitronyl nitroxide selectively bind to the predetermined sites on double stranded DNA. By using the two mismatch-binding ligands carrying the organic radicals as the glue for DNA, electron-spin assembly could be successfully synchronized with the hybridization. Periodically and tandemly arranged, two kinds of organic radical molecules at designed positions might be useful for an approach to build up scalable qubits of electron-spin-based quantum computing. The approach using DNA nanostructures as a scaffold to assembly functional small molecules can afford one of the promising ways for the future application of DNA nanostructures and nanotechnology.
Assuntos
Óxidos N-Cíclicos/química , DNA/química , Nanoestruturas/química , Óxidos N-Cíclicos/síntese química , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Óxidos de Nitrogênio/químicaRESUMO
The authors have previously proposed a theoretical model for exotic spin alignment in organic molecular assemblages: The alternating chain of organic biradicals in a singlet (Sb=0) ground state and monoradicals with S=1/2 has a ferrimagnetic ground state for the whole chain, which has been termed generalized ferrimagnetism. An important feature of the generalized ferrimagnetic spin alignment has been found in the deviation of the expectation value Sb2 of the biradical spin from zero. Even a triplet-like spin state Sb2=2 (Sb=1) has been predicted in the theoretical calculations. In this study, we have found experimental evidence for the pseudo-triplet state appearing in the ground-state singlet biradical of a real open-shell compound. At first, we have demonstrated from theoretical calculations that the singlet biradical has Sb2=2 (Sb=1) in a molecular pair with an S=1 metal ion as well as with the S=1/2 monoradical. The pseudo-triplet state of the biradical affords a singlet state of the whole system of the biradical-metal ion pair, which is readily detectable in experiments for verifying the theoretical prediction. As a model compound for the biradical-metal ion pair, a transition metal complex, [(bnn)(Ni(hfac)2)1.5(H2O)] (1), has been synthesized from a nitronyl nitroxide-based ground-state singlet biradical bnn and Ni(hfac)2. From X-ray crystallographic analyses, the compound contains a molecular pair of bnn and Ni(hfac)2, which serves as a model system under the above theoretical studies. It has been found from the analysis of the temperature dependence of magnetic susceptibility that the bnn-Ni(hfac)2 pair has the singlet (S=0) ground state. The singlet ground state of the pair results from an antiparallel coupling of the pseudo-triplet of the biradical and the S=1 spin on the Ni ion. The pseudo-triplet state in the ground-state singlet biradical has thus been verified experimentally, which is crucially important to realize the generalized ferrimagnetic spin alignment.
RESUMO
As a novel molecular designing for genuinely organic molecule-based ferrimagnets, we have proposed a strategy of "single-component ferrimagnetics". When a pi-biradical with an S = 1 ground state and a pi-monoradical with S = (1)/(2) are united by sigma-bonds, the pi-conjugation between the biradical and the monoradical moieties should be truncated in the resultant triradical. This gives magnetic degrees of freedom for both S = 1 and (1)/(2) in the single molecule, serving as a building block for organic molecule-based ferrimagnets under favorable conditions (single-component ferrimagnetics). We have designed and synthesized a triradical, 3-(1'-oxyl-3'-oxido-4',4',5',5'-tetramethylimidazolin-2-yl)benzoic acid 2,4-bis(1' '-oxyl-3' '-oxido-4' ',4' ',5' ',5' '-tetramethylimidazolin-2-yl)phenyl ester (4), as a model compound for the novel approach to genuinely organic ferrimagnets. In the triradical 4, a m-phenylene-bis(nitronyl nitroxide) biradical with a triplet (S = 1) ground state is united with a phenyl nitronyl nitroxide monoradical (S = (1)/(2)) by an ester coupler. Solution-phase ESR spectra from 4 exhibited a complex hyperfine splitting due to (14)N and (1)H nuclei. The analysis of the hyperfine structure based on perturbation calculations has revealed that the exchange interaction within the biradical moiety is much larger than those between the biradical and the monoradical moieties and the magnetic degrees of freedom for both S = 1 and (1)/(2) are retained in 4. An X-ray crystal structure analysis showed that the triradical molecules are arranged in a one-dimensional molecular chain in the crystal. The magnetic susceptibility in a crystalline solid state is consistent with the crystal structure.
RESUMO
Spin alignments in heterospin chains are examined from numerical calculations of model spin Hamiltonians. The Hamiltonians of the heterospin chains mimic an open-shell molecular assemblage composed of an organic biradical in a singlet (S = 0) ground state and a doublet (S = 1/2) monoradical, which are coupled by intermolecular ferromagnetic exchange interactions. It is found from numerical calculations of the spin Hamiltonians that the spin value S2 of the ground-state singlet biradical embedded in the exchange-coupled assemblage deviates from zero and contributes to the bulk magnetization. The alternating chain is found to have two kinds of ground spin states, a high- and a low-spin state. All the spins are parallel to each other in the high-spin state, which is characterized by the spin correlation function of (S(i).S(j)) = 0.25. On the other hand, the spin alignment in the low-spin state is found to be dependent on the topology of the intermolecular exchange interactions. The energy preference of the two states depends on the relative amplitude of the exchange interactions in the chain. The intermolecular ferromagnetic couplings are competing in the ground-state singlet biradical with the intramolecular antiferromagnetic interaction. The appearance of the two kinds of ground states is attributed to a quantum spin frustration effect inherent in the triangular motif of the competing interactions. Magnetic properties of a zigzag chain complex composed of a nitronyl nitroxide biradical with a singlet ground state and Cu(hfac)2 are examined on the basis of the theoretical calculations. The vanishing magnetic moments, or the product of susceptibility and temperature chiT, at low temperatures observed for the complex are consistent with those of the low-spin state predicted in the theoretical calculations.
RESUMO
Nitronyl nitroxide radical introduced to naphthyridine carbamate dimer is noncovalently bound to a CGG/CGG triad as an addressable position in DNA duplexes, leading to the programmed assembly of the radical molecules into an 11-mer duplex and a tandem repetitive array of double stranded DNA.
Assuntos
Carbamatos/química , DNA/química , Naftiridinas/química , Óxidos de Nitrogênio/química , Repetições de Trinucleotídeos , Dimerização , Conformação de Ácido NucleicoRESUMO
A stable guanine-substituted nitronyl nitroxide radical 1 has been synthesized and characterized. The single-crystal structure analyses and magnetic susceptibility measurements exhibit a one-dimensional architecture of guanine base resulting from carbonyl-amino hydrogen bonds in the solid state, giving a 1D ferromagnetic chain of the radical moieties.