Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 25(32): 7726-7732, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924974

RESUMO

Azo dyes that combine electron-withdrawing thiazole/benzothiazole heterocycles and electron-donating amino groups within the very same covalent skeleton exhibit relaxation times for their thermal isomerization kinetics within milli- and microsecond timescales at room temperature. Notably, the thermal back reaction of the corresponding benzothiazolium and thiazolium salts occurred much faster, within the picosecond temporal domain. In fact, these new light-sensitive platforms are the first molecular azo derivatives capable of reversible switching between their trans and cis isomers in a subnanosecond timescale under ambient conditions. In addition, theoretical calculations revealed very low activation energies for the isomerization process, in accordance with the fast subnanosecond kinetics that were observed experimentally.

2.
J Phys Chem A ; 122(21): 4819-4828, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29747505

RESUMO

The decay of electronically excited states of thymine (Thy) and thymidine 5'-monophosphate (TMP) was studied by time-resolved UV/vis and IR spectroscopy. In addition to the well-established ultrafast internal conversion to the ground state, a so far unidentified UV-induced species is observed. In D2O, this species decays with a time constant of 300 ps for thymine and of 1 ns for TMP. The species coexists with the lowest triplet state and is formed with a comparably high quantum yield of about 10% independent of the solvent. The experimentally determined spectral signatures are discussed in the light of quantum chemical calculations of the singlet and triplet excited states of thymine.

3.
J Am Chem Soc ; 138(37): 12219-27, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27571212

RESUMO

Controlling the internal motions of molecules by outside stimuli is a decisive task for the generation of responsive and complex molecular behavior and functionality. Light-induced structural changes of photoswitches are of special high interest due to the ease of signal application and high repeatability. Typically photoswitches use one reaction coordinate in their switching process and change between two more or less-defined states. Here we report on new twisted hemithioindigo photoswitches enabling two different reaction coordinates to be used for the switching process. Depending on the polarity of the solvent, either complete single bond (in DMSO) or double bond (in cyclohexane) rotation can be induced by visible light. This mutually independent switching establishes an unprecedented two-dimensional control of intramolecular rotations in this class of photoswitches. The mechanistic explanation involves formation of highly polar twisted intramolecular charge-transfer species in the excited state and is based on a large body of experimental quantifications, most notably ultrafast spectroscopy and quantum yield measurements in solvents of different polarity. The concept of pre-twisting in the ground state to open new, independent reaction coordinates in the excited state should be transferable to other photoswitching systems.

4.
Chemistry ; 20(43): 13984-92, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25214477

RESUMO

Hemithioindigo (HTI) photoswitches have a tremendous potential for biological and supramolecular applications due to their absorptions in the visible-light region in conjunction with ultrafast photoisomerization and high thermal bistability. Rational tailoring of the photophysical properties for a specific application is the key to exploit the full potential of HTIs as photoswitching tools. Herein we use time-resolved absorption spectroscopy and Hammett analysis to discover an unexpected principal limit to the photoisomerization rate for donor-substituted HTIs. By using stationary absorption and fluorescence measurements in combination with theoretical investigations, we offer a detailed mechanistic explanation for the observed rate limit. An alternative way of approaching and possibly even exceeding the maximum rate by multiple donor substitution is demonstrated, which give access to the fastest HTI photoswitch reported to date.


Assuntos
Índigo Carmim/análogos & derivados , Fluorescência , Índigo Carmim/química , Isomerismo , Luz , Modelos Moleculares , Processos Fotoquímicos , Fotoquímica , Análise Espectral
5.
Angew Chem Int Ed Engl ; 53(2): 591-4, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24282071

RESUMO

The photochemical properties of indigo, a widely used industrial dye, has attracted both experimentalists and theoreticians from the beginning. Especially the high photostability of indigo has been the subject of intensive research. Recently, it was proposed that after photoexcitation an intramolecular proton transfer followed by a nonradiative relaxation to the ground state promote photostability. In indigo the hydrogen bond and the proton transfer occur between the opposing hemiindigo parts. Here, we provide experimental and theoretical evidence that a hydrogen transfer within one hemiindigo or hemithioindigo part is sufficient to attain photostability. This concept can serve as an interesting strategy towards new photostable dyes for the visible part of the spectrum.


Assuntos
Índigo Carmim/análogos & derivados , Índigo Carmim/química , Prótons , Estabilidade de Medicamentos , Índigo Carmim/efeitos da radiação , Isomerismo , Modelos Químicos , Modelos Moleculares , Fotoquímica , Raios Ultravioleta
6.
J Phys Chem Lett ; 8(7): 1585-1592, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28304176

RESUMO

Twisted intramolecular charge transfer (TICT) formation in hemithioindigo photoswitches has recently been reported and constitutes a second deexcitation pathway complementary to photoisomerization. Typically, this behavior is not found for this type of photoswitches, and it takes special geometric and electronic conditions to realize it. Here we present a systematic study that identifies the molecular preconditions leading to TICT formation in donor substituted hemithioindigo, which can thus serve as a frame of reference for other photoswitching systems. By varying the substitution pattern and providing an in-depth physical characterization including time-resolved and quantum yield measurements, we found that neither ground-state pretwisting along the rotatable single bond nor the introduction of strong push-pull character across the photoisomerizable double bond alone leads to formation of TICT states. Only the combination of both ingredients produces light-induced TICT behavior in polar solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA