Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 12(7): 655-62, 2011 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-21642986

RESUMO

Engaged T cell antigen receptors (TCRs) initiate signaling through the adaptor protein Lat. In quiescent T cells, Lat is segregated into clusters on the cell surface, which raises the question of how TCR triggering initiates signaling. Using super-resolution fluorescence microscopy, we found that pre-existing Lat domains were neither phosphorylated nor laterally transported to TCR activation sites, which suggested that these clusters do not participate in TCR signaling. Instead, TCR activation resulted in the recruitment and phosphorylation of Lat from subsynaptic vesicles. Studies of Lat mutants confirmed that recruitment preceded and was essential for phosphorylation and that both processes were independent of surface clustering of Lat. Our data suggest that TCR ligation preconditions the membrane for vesicle recruitment and bulk activation of the Lat signaling network.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas de Membrana/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Células Jurkat , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência/métodos , Mutação , Fosforilação , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Vesículas Secretórias/imunologia , Linfócitos T/citologia , Linfócitos T/metabolismo
2.
PLoS Biol ; 13(12): e1002330, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26717410

RESUMO

During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias Pulmonares/secundário , Pulmão/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/fisiopatologia , Neoplasias da Mama/virologia , Permeabilidade Capilar , Proliferação de Células , Proteínas de Ligação a DNA , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemorragia/etiologia , Hemorragia/prevenção & controle , Humanos , Leucócitos/imunologia , Leucócitos/patologia , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Depleção Linfocítica , Camundongos Transgênicos , Células Mieloides/imunologia , Células Mieloides/patologia , Proteínas de Neoplasias/genética , Neovascularização Patológica/etiologia , Neovascularização Patológica/prevenção & controle , Infiltração de Neutrófilos , Polyomavirus/patogenicidade , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sobrevida , Fatores de Transcrição , Carga Tumoral
3.
Mol Membr Biol ; 32(1): 11-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25586872

RESUMO

Compartmentalization is a functionally important property of the plasma membrane, yet the underlying principles that organize membrane proteins into distinct domains are not well understood. Using single molecule localization microscopy, we assessed the clustering of five model membrane proteins in the plasma membrane of HeLa cells. All five proteins formed discrete and distinct nano-scaled clusters. The extent of clustering of the five proteins, independent of their membrane anchors, increased significantly when the fluorescent protein mEOS2 was employed, suggesting that protein-protein interactions are a key driver for clustering. Further, actin depolymerization or reduction of membrane order had a greater, and in some instances opposing effects on the clustering of membrane proteins fused to mEOS2 compared to PS-CFP2-fusion proteins. The data propose that protein interactions can override the lateral organization imposed by membrane anchors to provide an exquisite regulation of the mosaic-like compartmentalization of the plasma membrane.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microscopia/métodos , Actinas/química , Actinas/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Análise por Conglomerados , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico
4.
Breast Cancer Res ; 17: 79, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26040322

RESUMO

INTRODUCTION: Mammographic density (MD), after adjustment for a women's age and body mass index, is a strong and independent risk factor for breast cancer (BC). Although the BC risk attributable to increased MD is significant in healthy women, the biological basis of high mammographic density (HMD) causation and how it raises BC risk remain elusive. We assessed the histological and immunohistochemical differences between matched HMD and low mammographic density (LMD) breast tissues from healthy women to define which cell features may mediate the increased MD and MD-associated BC risk. METHODS: Tissues were obtained between 2008 and 2013 from 41 women undergoing prophylactic mastectomy because of their high BC risk profile. Tissue slices resected from the mastectomy specimens were X-rayed, then HMD and LMD regions were dissected based on radiological appearance. The histological composition, aromatase immunoreactivity, hormone receptor status and proliferation status were assessed, as were collagen amount and orientation, epithelial subsets and immune cell status. RESULTS: HMD tissue had a significantly greater proportion of stroma, collagen and epithelium, as well as less fat, than LMD tissue did. Second harmonic generation imaging demonstrated more organised stromal collagen in HMD tissues than in LMD tissues. There was significantly more aromatase immunoreactivity in both the stromal and glandular regions of HMD tissues than in those regions of LMD tissues, although no significant differences in levels of oestrogen receptor, progesterone receptor or Ki-67 expression were detected. The number of macrophages within the epithelium or stroma did not change; however, HMD stroma exhibited less CD206(+) alternatively activated macrophages. Epithelial cell maturation was not altered in HMD samples, and no evidence of epithelial-mesenchymal transition was seen; however, there was a significant increase in vimentin(+)/CD45(+) immune cells within the epithelial layer in HMD tissues. CONCLUSIONS: We confirmed increased proportions of stroma and epithelium, increased aromatase activity and no changes in hormone receptor or Ki-67 marker status in HMD tissue. The HMD region showed increased collagen deposition and organisation as well as decreased alternatively activated macrophages in the stroma. The HMD epithelium may be a site for local inflammation, as we observed a significant increase in CD45(+)/vimentin(+) immune cells in this area.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Mama/metabolismo , Colágeno/metabolismo , Epitélio/metabolismo , Glândulas Mamárias Humanas/anormalidades , Células Estromais/metabolismo , Adulto , Biomarcadores Tumorais/metabolismo , Mama/patologia , Densidade da Mama , Neoplasias da Mama/imunologia , Transição Epitelial-Mesenquimal , Epitélio/patologia , Feminino , Humanos , Imuno-Histoquímica , Imunofenotipagem , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Mamografia , Pessoa de Meia-Idade , Fenótipo , Fatores de Risco
5.
Carcinogenesis ; 35(8): 1671-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24903340

RESUMO

Basic in vitro systems can be used to model and assess complex diseases, such as cancer. Recent advances in this field include the incorporation of multiple cell types and extracellular matrix proteins into three-dimensional (3D) models to recapitulate the structure, organization and functionality of live tissue in situ. Cells within such a 3D environment behave very differently from cells on two-dimensional (2D) substrates, as cell-matrix interactions trigger signalling pathways and cellular responses in 3D, which may not be observed in 2D. Thus, the use of 3D systems can be advantageous for the assessment of disease progression over 2D set-ups alone. Here, we highlight the current advantages and challenges of employing 3D systems in the study of cancer and provide an overview to guide the appropriate use of distinct models in cancer research.


Assuntos
Comunicação Celular , Modelos Biológicos , Neoplasias/patologia , Microambiente Tumoral , Animais , Técnicas de Cocultura , Humanos , Transdução de Sinais
6.
Bioconjug Chem ; 25(7): 1282-9, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24892699

RESUMO

Herein, the ability of porous silicon (PSi) particles for selectively binding to specific cells is investigated. PSi microparticles with a high reflectance band in the reflectivity profile are fabricated, and subsequently passivated and modified with antibodies via the Cu(I)-catalyzed alkyne-azide cycloaddition reaction and succimidyl activation. To demonstrate the ability of the antibody-modified PSi particles to selectively bind to one cell type over others, HeLa cells were transfected with surface epitopes fused to fluorescent proteins. The antibody-functionalized PSi particles showed good selectivity for the corresponding surface protein on HeLa cells, with no significant cross-reactivity. The results are important for the application of PSi particles in cell sensing and drug delivery.


Assuntos
Anticorpos Monoclonais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Receptores da Transferrina/metabolismo , Silício/química , Alcinos/química , Anticorpos Monoclonais/imunologia , Azidas/química , Reação de Cicloadição , Proteínas de Fluorescência Verde/imunologia , Células HeLa , Humanos , Microscopia Eletrônica de Varredura , Porosidade , Silício/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
7.
Langmuir ; 30(18): 5209-16, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24716818

RESUMO

In this study, we describe a solution procedure for the preparation and surface modification of photostable colloidal silicon quantum dots (SiQDs) for imaging of cancer cells. Photoluminescent SiQDs were synthesized by reduction of halogenated silane precursors using a microemulsion process. It was shown that 1,8-nonadiyne molecules could be grafted onto the surface of hydrogen-terminated SiQDs via ultraviolet (UV)-promoted hydrosilylation, demonstrated by Fourier transform infrared spectroscopy (FTIR) measurements. In addition, various azide molecules were coupled onto nonadiyne-functionalized particles, rendering particles dispersible in selected polar and nonpolar solvents. The photoluminescence of functionalized SiQDs was stable against photobleaching and did not vary appreciably within biologically applicable pH and temperature ranges. To demonstrate compatibility with biological systems, water-soluble SiQDs were used for fluorescent imaging of HeLa cells. In addition, the SiQDs were shown to be non-cytotoxic at concentrations up to 240 µg/mL. The results presented herein provide good evidence for the versatility of functionalized SiQDs for fluorescent bioimaging application.


Assuntos
Química Click/métodos , Pontos Quânticos , Silício/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
8.
Langmuir ; 30(28): 8509-15, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24960524

RESUMO

Herein we show the development of biointerfaces on indium-tin oxide (ITO) surfaces prepared from organophosphonate self-assembled monolayers. The interfaces were prepared in a stepwise fabrication procedure containing a base monolayer modified with oligo(ethylene oxide) species to which biological recognition ligands were attached. The density of ligands was controlled by varying the ratio of two oligo(ethylene oxide) species such that only one is compatible with further coupling. The final biointerface on ITO was assessed using cell adhesion studies, which showed that the biointerfaces prepared on ITO performed similarly to equivalent monolayers on gold or silicon.


Assuntos
Índio/química , Organofosfonatos/química , Compostos de Estanho/química , Ouro/química , Silício/química
9.
Bioessays ; 34(9): 739-47, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22696155

RESUMO

Recently developed super-resolution microscopy techniques are changing our understanding of lipid rafts and membrane organisation in general. The lipid raft hypothesis postulates that cholesterol can drive the formation of ordered domains within the plasma membrane of cells, which may serve as platforms for cell signalling and membrane trafficking. There is now a wealth of evidence for these domains. However, their study has hitherto been hampered by the resolution limit of optical microscopy, making the definition of their properties problematic and contentious. New microscopy techniques circumvent the resolution limit and, for the first time, allow the fluorescence imaging of structures on length scales below 200 nm. This review describes such techniques, particularly as applied to the study of membrane organisation, synthesising newly emerging facets of lipid raft biology into a state-of-the art model.


Assuntos
Aumento da Imagem/métodos , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Microscopia de Fluorescência/métodos , Citoesqueleto de Actina/metabolismo , Animais , Colesterol/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Mapeamento de Interação de Proteínas , Transporte Proteico , Transdução de Sinais , Espectrometria de Fluorescência/métodos , Relação Estrutura-Atividade
10.
Sci Adv ; 10(27): eadl1197, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959305

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.


Assuntos
Carcinoma Ductal Pancreático , Fibrose , Neoplasias Pancreáticas , Proteômica , Animais , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Proteômica/métodos , Camundongos , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Modelos Animais de Doenças , Linhagem Celular Tumoral , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Moléculas de Adesão Celular
11.
Biophys J ; 105(2): L05-7, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23870275

RESUMO

Identifying the three-dimensional molecular organization of subcellular organelles in intact cells has been challenging to date. Here we present an analysis approach for three-dimensional localization microscopy that can not only identify subcellular objects below the diffraction limit but also quantify their shape and volume. This approach is particularly useful to map the topography of the plasma membrane and measure protein distribution within an undulating membrane.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Membrana Celular/química , Membrana Celular/ultraestrutura , Interpretação Estatística de Dados
12.
Traffic ; 12(12): 1730-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21883764

RESUMO

The biochemical composition and biophysical properties of cell membranes are hypothesized to affect cellular processes such as phagocytosis. Here, we examined the plasma membranes of murine macrophage cell lines during the early stages of uptake of immunoglobulin G (IgG)-coated polystyrene particles. We found that the plasma membrane undergoes rapid actin-independent condensation to form highly ordered phagosomal membranes, the biophysical hallmark of lipid rafts. Surprisingly, these membranes are depleted of cholesterol and enriched in sphingomyelin and ceramide. Inhibition of sphingomyelinase activity impairs membrane condensation, F-actin accumulation at phagocytic cups and particle uptake. Switching phagosomal membranes to a cholesterol-rich environment had no effect on membrane condensation and the rate of phagocytosis. In contrast, preventing membrane condensation with the oxysterol 7-ketocholesterol, even in the presence of ceramide, blocked F-actin dissociation from nascent phagosomes and particle uptake. In conclusion, our results suggest that ordered membranes function to co-ordinate F-actin remodelling and that the biophysical properties of phagosomal membranes are essential for phagocytosis.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/fisiologia , Vesículas Revestidas/fisiologia , Imunoglobulina G/metabolismo , Macrófagos/fisiologia , Fagocitose/fisiologia , Poliestirenos/química , Actinas/metabolismo , Animais , Linhagem Celular , Membrana Celular/imunologia , Ceramidas/metabolismo , Colesterol/metabolismo , Vesículas Revestidas/imunologia , Vesículas Revestidas/metabolismo , Humanos , Imunoglobulina G/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Lipídeos de Membrana/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/fisiologia , Fagocitose/imunologia , Fagossomos/imunologia , Fagossomos/metabolismo , Fagossomos/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Esteróis/metabolismo
13.
Sci Adv ; 9(17): eadf9063, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126544

RESUMO

Aberrant AKT activation occurs in a number of cancers, metabolic syndrome, and immune disorders, making it an important target for the treatment of many diseases. To monitor spatial and temporal AKT activity in a live setting, we generated an Akt-FRET biosensor mouse that allows longitudinal assessment of AKT activity using intravital imaging in conjunction with image stabilization and optical window technology. We demonstrate the sensitivity of the Akt-FRET biosensor mouse using various cancer models and verify its suitability to monitor response to drug targeting in spheroid and organotypic models. We also show that the dynamics of AKT activation can be monitored in real time in diverse tissues, including in individual islets of the pancreas, in the brown and white adipose tissue, and in the skeletal muscle. Thus, the Akt-FRET biosensor mouse provides an important tool to study AKT dynamics in live tissue contexts and has broad preclinical applications.


Assuntos
Técnicas Biossensoriais , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas Biossensoriais/métodos
14.
Angew Chem Int Ed Engl ; 51(31): 7706-10, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22730419

RESUMO

Smart surfaces presenting both antifouling molecules with a charged functional group at their distal end, and molecules that are terminated by RGD peptides for cell adhesion, were fabricated and characterized (see picture). By applying potentials of +300 or -300 mV, the surfaces could be dynamically switched to make the peptide accessible or inaccessible to cells.


Assuntos
Elétrons , Oligopeptídeos/farmacologia , Polietilenoglicóis/química , Compostos de Amônio Quaternário/química , Ácidos Sulfônicos/química , Adesão Celular/efeitos dos fármacos , Células HL-60 , Humanos , Oligopeptídeos/química , Relação Estrutura-Atividade , Propriedades de Superfície
15.
Bio Protoc ; 12(24)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36618089

RESUMO

The extracellular matrix (ECM) is a non-cellular network of macromolecules, which provides cells and tissues with structural support and biomechanical feedback to regulate cellular function, tissue tension, and homeostasis. Even subtle changes to ECM abundance, architecture, and organization can affect downstream biological pathways, thereby influencing normal cell and tissue function and also driving disease conditions. For example, in cancer, the ECM is well known to provide both biophysical and biochemical cues that influence cancer initiation, progression, and metastasis, highlighting the need to better understand cell-ECM interactions in cancer and other ECM-enriched diseases. Initial cell-derived matrix (CDM) models were used as an in vitro system to mimic and assess the physiologically relevant three-dimensional (3D) cell-ECM interactions. Here, we describe an expansion to these initial CDM models generated by fibroblasts to assess the effect of genetic or pharmacological intervention on fibroblast-mediated matrix production and organization. Additionally, we highlight current methodologies to quantify changes in the ultrastructure and isotropy of the resulting ECM and also provide protocols for assessing cancer cell interaction with CDMs. Understanding the nature and influence of these complex and heterogeneous processes can offer insights into the biomechanical and biochemical mechanisms, which drive cancer development and metastasis, and how we can target them to improve cancer outcomes. This protocol was validated in: Sci Adv (2021), DOI: 10.1126/sciadv.abh0363.

16.
Biophys J ; 101(4): 764-73, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21843466

RESUMO

The physical attributes of the extracellular matrix play a key role in endothelium function by modulating the morphology and phenotype of endothelial cells. Despite the recognized importance of matrix-cell interactions, it is currently not known how the arrangement of adhesive ligands affects the morphology, signal transduction processes, and migration of endothelial cells. We aimed to study how endothelial cells respond to the average spatial arrangement of integrin ligands. We designed functionalized silicon surfaces with average spacing ranging from nanometers to micrometers of the peptide arginine-glycine-aspartic acid (RGD). We found that endothelial cells adhered to and spread on surfaces independently of RGD-to-RGD spacing. In contrast, organization within focal adhesions (FAs) was extremely sensitive to ligand spacing, requiring a nanoscaled average RGD spacing of 44 nm to form lipid raft domains at FAs. The localized membrane organization strongly correlated with the signaling efficiencies of integrin activation and regulated vascular endothelial growth factor (VEGF)-induced signaling events. Importantly, this modulation in signal transduction directly affected the migratory ability of endothelial cells. We conclude that endothelial cells sense nanoscaled variations in the spacing of integrin ligands, which in turn influences signal transduction processes. Average RGD spacing similar to that found in fibronectin leads to lipid raft accumulation at FAs, enhances sensitivity to VEGF stimulation, and controls migration in endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Integrinas/metabolismo , Transdução de Sinais , Animais , Bovinos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Ligantes , Transdução de Sinais/efeitos dos fármacos , Silício/química , Propriedades de Superfície/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
17.
Cell Rep ; 35(2): 108945, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852842

RESUMO

Basal breast cancer is associated with younger age, early relapse, and a high mortality rate. Here, we use unbiased droplet-based single-cell RNA sequencing (RNA-seq) to elucidate the cellular basis of tumor progression during the specification of the basal breast cancer subtype from the luminal progenitor population in the MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mammary tumor model. We find that basal-like cancer cells resemble the alveolar lineage that is specified upon pregnancy and encompass the acquisition of an aberrant post-lactation developmental program of involution that triggers remodeling of the tumor microenvironment and metastatic dissemination. This involution mimicry is characterized by a highly interactive multicellular network, with involution cancer-associated fibroblasts playing a pivotal role in extracellular matrix remodeling and immunosuppression. Our results may partially explain the increased risk and poor prognosis of breast cancer associated with childbirth.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma Basocelular/genética , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/genética , Transcriptoma , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Linhagem da Célula/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/virologia , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Vírus do Tumor Mamário do Camundongo/crescimento & desenvolvimento , Vírus do Tumor Mamário do Camundongo/patogenicidade , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Metástase Neoplásica , Gravidez , Análise de Célula Única , Microambiente Tumoral/genética
18.
Sci Adv ; 7(40): eabh0363, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586840

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow­induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy.

19.
Biophys J ; 99(1): L7-9, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20655825

RESUMO

We report the first imaging of membrane lipid order in a whole, living vertebrate organism. This was achieved with the phase-sensitive, membrane-partitioning probe Laurdan in conjunction with multiphoton microscopy to image cell membranes in various tissues of live zebrafish embryos in three dimensions, including hindbrain, retina, muscle, gut, and kidney. The data also allowed quantitative analysis of membrane order, which showed high lipid order in the apical surfaces of polarized epithelial cells. The transition of membrane order imaging from cultured cell lines to living organisms is an important step forward in understanding the physiological relevance of membrane microdomains including lipid rafts.


Assuntos
Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Imagem Molecular/métodos , Peixe-Zebra/metabolismo , 2-Naftilamina/análogos & derivados , 2-Naftilamina/metabolismo , Animais , Corantes Fluorescentes/metabolismo , Imageamento Tridimensional , Lauratos/metabolismo , Microscopia , Fótons , Peixe-Zebra/embriologia
20.
Nano Lett ; 9(5): 2021-5, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19382766

RESUMO

Monitoring enzyme secretion in tissue culture has proved challenging because to date the activity cannot be continuously measured in situ. In this Letter, we present a solution using biopolymer loaded photonic crystals of anodized silicon. Shifts in the optical response by proteolytic degradation of the biopolymer provide label-free sensing with unprecedented low detection limits (1 pg) and calculation of kinetic parameters. The enhancement in sensitivity relative to previous photonic crystal sensors constitutes a change in the sensing paradigm because here the entire pore space is responsive to the secreted enzyme rather than just the pore walls. In situ monitoring is demonstrated by detecting secretion of matrix metalloprotease 9 from stimulated human macrophages.


Assuntos
Peptídeo Hidrolases/análise , Pontos Quânticos , Técnicas de Cultura de Células , Células Cultivadas , Humanos , Macrófagos/enzimologia , Peptídeo Hidrolases/metabolismo , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA