Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
PLoS Biol ; 19(6): e3001149, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34153028

RESUMO

Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength.


Assuntos
Fibras Musgosas Hipocampais/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Colforsina/farmacologia , Ácido Glutâmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/ultraestrutura , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622791

RESUMO

The cyclic adenosine monophosphate (cAMP)-dependent potentiation of neurotransmitter release is important for higher brain functions such as learning and memory. To reveal the underlying mechanisms, we applied paired pre- and postsynaptic recordings from hippocampal mossy fiber-CA3 synapses. Ca2+ uncaging experiments did not reveal changes in the intracellular Ca2+ sensitivity for transmitter release by cAMP, but suggested an increase in the local Ca2+ concentration at the release site, which was much lower than that of other synapses before potentiation. Total internal reflection fluorescence (TIRF) microscopy indicated a clear increase in the local Ca2+ concentration at the release site within 5 to 10 min, suggesting that the increase in local Ca2+ is explained by the simple mechanism of rapid Ca2+ channel accumulation. Consistently, two-dimensional time-gated stimulated emission depletion microscopy (gSTED) microscopy showed an increase in the P/Q-type Ca2+ channel cluster size near the release sites. Taken together, this study suggests a potential mechanism for the cAMP-dependent increase in transmission at hippocampal mossy fiber-CA3 synapses, namely an accumulation of active zone Ca2+ channels.


Assuntos
Canais de Cálcio/metabolismo , AMP Cíclico/metabolismo , Fibras Musgosas Hipocampais/fisiologia , Transmissão Sináptica , Cálcio/metabolismo , Microscopia de Fluorescência , Plasticidade Neuronal , Técnicas de Patch-Clamp
3.
J Neurogenet ; 34(1): 92-105, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31965876

RESUMO

Amyloid precursor protein (APP), the precursor of amyloid beta peptide, plays a central role in Alzheimer's disease (AD), a pathology characterized by memory decline and synaptic loss upon aging. Understanding the physiological role of APP is fundamental in deciphering the progression of AD, and several studies suggest a synaptic function via protein-protein interactions. Nevertheless, it remains unclear whether and how these interactions contribute to memory. In Drosophila, we previously showed that APP-like (APPL), the fly APP homolog, is required for aversive associative memory in the olfactory memory center, the mushroom body (MB). In the present study, we show that APPL is required for appetitive long-term memory (LTM), another form of associative memory, in a specific neuronal subpopulation of the MB, the α'/ß' Kenyon cells. Using a biochemical approach, we identify the synaptic MAGUK (membrane-associated guanylate kinase) proteins X11, CASK, Dlgh2 and Dlgh4 as interactants of the APP intracellular domain (AICD). Next, we show that the Drosophila homologs CASK and Dlg are also required for appetitive LTM in the α'/ß' neurons. Finally, using a double RNAi approach, we demonstrate that genetic interactions between APPL and CASK, as well as between APPL and Dlg, are critical for appetitive LTM. In summary, our results suggest that APPL contributes to associative long-term memory through its interactions with the main synaptic scaffolding proteins CASK and Dlg. This function should be conserved across species.


Assuntos
Comportamento Apetitivo/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Memória de Longo Prazo/fisiologia , Corpos Pedunculados/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/fisiologia
4.
J Neurogenet ; 34(1): 106-114, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31980003

RESUMO

The cellular analysis of mushroom body (MB)-dependent memory forming processes is far advanced, whereas, the molecular and physiological understanding of their synaptic basis lags behind. Recent analysis of the Drosophila olfactory system showed that Unc13A, a member of the M(Unc13) release factor family, promotes a phasic, high release probability component, while Unc13B supports a slower tonic release component, reflecting their different nanoscopic positioning within individual active zones. We here use STED super-resolution microscopy of MB lobe synapses to show that Unc13A clusters closer to the active zone centre than Unc13B. Unc13A specifically supported phasic transmission and short-term plasticity of Kenyon cell:output neuron synapses, measured by combining electrophysiological recordings of output neurons with optogenetic stimulation. Knockdown of unc13A within Kenyon cells provoked drastic deficits of olfactory aversive short-term and anaesthesia-sensitive middle-term memory. Knockdown of unc13B provoked milder memory deficits. Thus, a low frequency domain transmission component is probably crucial for the proper representation of memory-associated activity patterns, consistent with sparse Kenyon cell activation during memory acquisition and retrieval. Notably, Unc13A/B ratios appeared highly diversified across MB lobes, leaving room for an interplay of activity components in memory encoding and retrieval.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Memória/fisiologia , Corpos Pedunculados/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Percepção Olfatória/fisiologia , Animais , Drosophila , Feminino , Isoformas de Proteínas , Sinapses/metabolismo
5.
PLoS Biol ; 14(9): e1002563, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27684064

RESUMO

Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse.

6.
Proc Natl Acad Sci U S A ; 113(41): 11615-11620, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671655

RESUMO

The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (CaVs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2-deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in CaV2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.


Assuntos
Canais de Cálcio/metabolismo , Hipocampo/metabolismo , Sinapses/metabolismo , Potenciais de Ação , Animais , Cálcio/metabolismo , Células Cultivadas , Fenômenos Eletrofisiológicos , Feminino , Deleção de Genes , Expressão Gênica , Marcação de Genes , Loci Gênicos , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Transporte Proteico , Transmissão Sináptica/genética , Vesículas Sinápticas/metabolismo
7.
Nat Methods ; 12(9): 827-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26214129

RESUMO

Electro-optical scanning (>1,000 frames/s) with pixel dwell times on the order of the lifetime of the fluorescent molecular state renders stimulated emission depletion (STED) nanoscopy temporally stochastic. Photon detection from a molecule occurs stochastically in one of several scanning frames, and the spatial origin of the photon is known with subdiffraction precision. Images are built up by binning consecutive frames, making the time resolution freely adjustable. We demonstrated nanoscopy of vesicle motions in living Drosophila larvae and the cellular uptake of viral particles with 5- to 10-ms temporal resolution.


Assuntos
Aumento da Imagem/instrumentação , Sistemas Microeletromecânicos/instrumentação , Microscopia de Fluorescência/instrumentação , Imagem Molecular/instrumentação , Nanotecnologia/instrumentação , Fotometria/instrumentação , Interpretação Estatística de Dados , Desenho de Equipamento , Análise de Falha de Equipamento , Processos Estocásticos
8.
PLoS Genet ; 7(7): e1002146, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21750683

RESUMO

Gap junction channels are intercellular conduits that allow diffusional exchange of ions, second messengers, and metabolites. Human oligodendrocytes express the gap junction protein connexin47 (Cx47), which is encoded by the GJC2 gene. The autosomal recessive mutation hCx47M283T causes Pelizaeus-Merzbacher-like disease 1 (PMLD1), a progressive leukodystrophy characterized by hypomyelination, retarded motor development, nystagmus, and spasticity. We introduced the human missense mutation into the orthologous position of the mouse Gjc2 gene and inserted the mCx47M282T coding sequence into the mouse genome via homologous recombination in embryonic stem cells. Three-week-old homozygous Cx47M282T mice displayed impaired rotarod performance but unchanged open-field behavior. 10-15-day-old homozygous Cx47M282T and Cx47 null mice revealed a more than 80% reduction in the number of cells participating in glial networks after biocytin injections into oligodendrocytes in sections of corpus callosum. Homozygous expression of mCx47M282T resulted in reduced MBP expression and astrogliosis in the cerebellum of ten-day-old mice which could also be detected in Cx47 null mice of the same age. Three-month-old homozygous Cx47M282T mice exhibited neither altered open-field behavior nor impaired rotarod performance anymore. Adult mCx47M282T expressing mice did not show substantial myelin alterations, but homozygous Cx47M282T mice, additionally deprived of connexin32, which is also expressed in oligodendrocytes, died within six weeks after birth and displayed severe myelin defects accompanied by astrogliosis and activated microglia. These results strongly suggest that PMLD1 is caused by the loss of Cx47 channel function that results in impaired panglial coupling in white matter tissue.


Assuntos
Conexinas , Mutação de Sentido Incorreto/genética , Oligodendroglia/metabolismo , Doença de Pelizaeus-Merzbacher , Animais , Conexinas/deficiência , Conexinas/genética , Conexinas/metabolismo , Corpo Caloso/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Humanos , Canais Iônicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/metabolismo , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Doença de Pelizaeus-Merzbacher/patologia , Células-Tronco/metabolismo , Proteína beta-1 de Junções Comunicantes
9.
J Neurosci ; 32(22): 7499-518, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22649229

RESUMO

In this study, we have investigated the contribution of oligodendrocytic connexin47 (Cx47) and astrocytic Cx30 to panglial gap junctional networks as well as myelin maintenance and function by deletion of both connexin coding DNAs in mice. Biocytin injections revealed complete disruption of oligodendrocyte-to-astrocyte coupling in the white matter of 10- to 15-d-old Cx30/Cx47 double-deficient mice, while oligodendrocyte-to-oligodendrocyte coupling was maintained. There were no quantitative differences regarding cellular networks in acute brain slices obtained from Cx30/Cx47 double-null mice and control littermates, probably caused by the upregulation of oligodendrocytic Cx32 in Cx30/Cx47 double-deficient mice. We observed early onset myelin pathology, and ∼40% of Cx30/Cx47 double-deficient animals died within 42 to 90 d after birth, accompanied by severe motor impairments. Histological and ultrastructural analyses revealed severe vacuolization and myelination defects in all white matter tracts of the CNS. Furthermore, Cx30/Cx47 double-deficient mice exhibited a decreased number of oligodendrocytes, severe astrogliosis, and microglial activation in white matter tracts. Although less affected concerning motor impairment, surviving double-knock-out (KO) mice showed behavioral alterations in the open field and in the rotarod task. Vacuole formation and thinner myelin sheaths were evident also with adult surviving double-KO mice. Since interastrocytic coupling due to Cx43 expression and interoligodendrocytic coupling because of Cx32 expression are still maintained, Cx30/Cx47 double-deficient mice demonstrate the functional role of both connexins for interastrocytic, interoligodendrocytic, and panglial coupling, and show that both connexins are required for maintenance of myelin.


Assuntos
Sistema Nervoso Central/citologia , Junções Comunicantes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Bainha de Mielina/fisiologia , Neuroglia/citologia , Oligodendroglia/citologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Actinas/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biofísica , Sistema Nervoso Central/crescimento & desenvolvimento , Conexina 30 , Conexinas/deficiência , Conexinas/metabolismo , Estimulação Elétrica , Comportamento Exploratório/fisiologia , Junções Comunicantes/ultraestrutura , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Habituação Psicofisiológica/genética , Técnicas In Vitro , Estimativa de Kaplan-Meier , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Atividade Motora/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/fisiologia , Neuroglia/ultraestrutura , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/fisiologia , Oligodendroglia/ultraestrutura , Técnicas de Patch-Clamp , Desempenho Psicomotor/fisiologia , RNA Mensageiro/metabolismo , Reconhecimento Psicológico/fisiologia , Coloração pela Prata , Estatísticas não Paramétricas , Proteína beta-1 de Junções Comunicantes
10.
Nanoscale ; 15(17): 7781-7791, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016756

RESUMO

Enzymes are more selective and efficient than synthetic catalysts but are limited by difficult recycling. This is overcome by immobilisation, namely through encapsulation, with the main drawback of this method being slow diffusion of products and reactants, resulting in effectively lowered enzyme activity. Fluorinated dendritic amphiphiles were reported to self-assemble into regularly perforated bilayer vesicles, so-called "stomatosomes". It was proposed that they could be promising novel reaction vessels due to their increased porosity while retaining larger biomolecules at the same time. Amphiphiles were synthesised and their aggregation was analysed by cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) in buffered conditions necessary for enzyme encapsulation. Urease and albumin were encapsulated using the thin-film hydration method and investigated by confocal and time-gated stimulated emission depletion microscopy (gSTED). Their release was then used to probe the selective retention of cargo by stomatosomes. Free and encapsulated enzyme activity were compared and their capacity to be reused was evaluated using the Berthelot method. Urease was successfully encapsulated, did not leak out at room temperature, and showed better activity in perforated vesicles than in closed vesicles without perforations. Encapsulated enzyme could be reused with retained activity over 8 cycles using centrifugation, while free enzyme had to be filtrated. These results show that stomatosomes may be used in enzyme immobilisation applications and present advantages over closed vesicles or free enzyme.


Assuntos
Enzimas Imobilizadas , Urease , Microscopia Eletrônica de Transmissão
11.
Sci Adv ; 9(7): eade7804, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800417

RESUMO

At presynaptic active zones (AZs), conserved scaffold protein architectures control synaptic vesicle (SV) release by defining the nanoscale distribution and density of voltage-gated Ca2+ channels (VGCCs). While AZs can potentiate SV release in the minutes range, we lack an understanding of how AZ scaffold components and VGCCs engage into potentiation. We here establish dynamic, intravital single-molecule imaging of endogenously tagged proteins at Drosophila AZs undergoing presynaptic homeostatic potentiation. During potentiation, the numbers of α1 VGCC subunit Cacophony (Cac) increased per AZ, while their mobility decreased and nanoscale distribution compacted. These dynamic Cac changes depended on the interaction between Cac channel's intracellular carboxyl terminus and the membrane-close amino-terminal region of the ELKS-family protein Bruchpilot, whose distribution compacted drastically. The Cac-ELKS/Bruchpilot interaction was also needed for sustained AZ potentiation. Our single-molecule analysis illustrates how the AZ scaffold couples to VGCC nanoscale distribution and dynamics to establish a state of sustained potentiation.


Assuntos
Proteínas de Drosophila , Sinapses , Animais , Sinapses/metabolismo , Drosophila/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Drosophila/metabolismo , Transmissão Sináptica
12.
Cell Stress ; 6(5): 61-64, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36448030

RESUMO

Alzheimer's disease (AD) is the most common form of dementia with millions of people affected worldwide. Pathophysiological manifestations of AD include the extracellular accumulation of amyloid beta (Abeta) pep-tides, products of the proteolytic cleavage of the amy-loid precursor protein APP. Increasing evidence sug-gests that Abeta peptides also accumulate intracellular-ly, triggering neurotoxic events such as mitochondrial dysfunction. However, the molecular factors driving formation and toxicity of intracellular Abeta are poorly understood. In our recent study [EMBO Mol Med 2022 - e13952], we used different eukaryotic model systems to identify such factors. Based on a genetic screen in yeast and subsequent molecular analyses, we found that both the yeast chaperone Ydj1 and its human ortholog DnaJA1 physically interact with Abeta, facili-tate the aggregation of Abeta peptides into small oli-gomers and promote their translocation to mitochon-dria. Deletion or downregulation of this chaperone pro-tected from Abeta-mediated toxicity in yeast and Dro-sophila AD models, respectively. Most importantly, the identified chaperone is found to be dysregulated in post-mortem human samples of AD patients. Here, we aim to outline our key findings, highlighting pathological functions of a heat shock protein (Hsp) family member, which are generally considered protective rather than toxic during neurodegeneration. Our results thus chal-lenge the concept of developing generalized chaperone activation-based therapies and call for carefully consid-ering also maladaptive functions of specific heat shock proteins.

13.
EMBO Mol Med ; 14(5): e13952, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35373908

RESUMO

Amyloid beta 42 (Abeta42) is the principal trigger of neurodegeneration during Alzheimer's disease (AD). However, the etiology of its noxious cellular effects remains elusive. In a combinatory genetic and proteomic approach using a yeast model to study aspects of intracellular Abeta42 toxicity, we here identify the HSP40 family member Ydj1, the yeast orthologue of human DnaJA1, as a crucial factor in Abeta42-mediated cell death. We demonstrate that Ydj1/DnaJA1 physically interacts with Abeta42 (in yeast and mouse), stabilizes Abeta42 oligomers, and mediates their translocation to mitochondria. Consequently, deletion of YDJ1 strongly reduces co-purification of Abeta42 with mitochondria and prevents Abeta42-induced mitochondria-dependent cell death. Consistently, purified DnaJ chaperone delays Abeta42 fibrillization in vitro, and heterologous expression of human DnaJA1 induces formation of Abeta42 oligomers and their deleterious translocation to mitochondria in vivo. Finally, downregulation of the Ydj1 fly homologue, Droj2, improves stress resistance, mitochondrial morphology, and memory performance in a Drosophila melanogaster AD model. These data reveal an unexpected and detrimental role for specific HSP40s in promoting hallmarks of Abeta42 toxicity.


Assuntos
Doença de Alzheimer , Proteínas de Saccharomyces cerevisiae , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico HSP40/genética , Camundongos , Chaperonas Moleculares , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Nat Commun ; 12(1): 1932, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771998

RESUMO

The physical distance between presynaptic Ca2+ channels and the Ca2+ sensors triggering the release of neurotransmitter-containing vesicles regulates short-term plasticity (STP). While STP is highly diversified across synapse types, the computational and behavioral relevance of this diversity remains unclear. In the Drosophila brain, at nanoscale level, we can distinguish distinct coupling distances between Ca2+ channels and the (m)unc13 family priming factors, Unc13A and Unc13B. Importantly, coupling distance defines release components with distinct STP characteristics. Here, we show that while Unc13A and Unc13B both contribute to synaptic signalling, they play distinct roles in neural decoding of olfactory information at excitatory projection neuron (ePN) output synapses. Unc13A clusters closer to Ca2+ channels than Unc13B, specifically promoting fast phasic signal transfer. Reduction of Unc13A in ePNs attenuates responses to both aversive and appetitive stimuli, while reduction of Unc13B provokes a general shift towards appetitive values. Collectively, we provide direct genetic evidence that release components of distinct nanoscopic coupling distances differentially control STP to play distinct roles in neural decoding of sensory information.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Apetitivo/fisiologia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Proteínas de Membrana/genética , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Sinapses/metabolismo , Transmissão Sináptica/genética , Vesículas Sinápticas/metabolismo
15.
Cell Rep ; 35(2): 108941, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852845

RESUMO

Mitochondrial function declines during brain aging and is suspected to play a key role in age-induced cognitive decline and neurodegeneration. Supplementing levels of spermidine, a body-endogenous metabolite, has been shown to promote mitochondrial respiration and delay aspects of brain aging. Spermidine serves as the amino-butyl group donor for the synthesis of hypusine (Nε-[4-amino-2-hydroxybutyl]-lysine) at a specific lysine residue of the eukaryotic translation initiation factor 5A (eIF5A). Here, we show that in the Drosophila brain, hypusinated eIF5A levels decline with age but can be boosted by dietary spermidine. Several genetic regimes of attenuating eIF5A hypusination all similarly affect brain mitochondrial respiration resembling age-typical mitochondrial decay and also provoke a premature aging of locomotion and memory formation in adult Drosophilae. eIF5A hypusination, conserved through all eukaryotes as an obviously critical effector of spermidine, might thus be an important diagnostic and therapeutic avenue in aspects of brain aging provoked by mitochondrial decline.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Lisina/análogos & derivados , Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Espermidina/farmacologia , Administração Oral , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Respiração Celular/genética , Proteínas de Drosophila/classificação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Locomoção/fisiologia , Lisina/metabolismo , Memória/fisiologia , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Animais , Neurônios/metabolismo , Neurônios/patologia , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Espermidina/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
16.
Glia ; 58(9): 1104-17, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20468052

RESUMO

According to previously published ultrastructural studies, oligodendrocytes in white matter exhibit gap junctions with astrocytes, but not among each other, while in vitro oligodendrocytes form functional gap junctions. We have studied functional coupling among oligodendrocytes in acute slices of postnatal mouse corpus callosum. By whole-cell patch clamp we dialyzed oligodendrocytes with biocytin, a gap junction-permeable tracer. On average 61 cells were positive for biocytin detected by labeling with streptavidin-Cy3. About 77% of the coupled cells stained positively for the oligodendrocyte marker protein CNPase, 9% for the astrocyte marker GFAP and 14% were negative for both CNPase and GFAP. In the latter population, the majority expressed Olig2 and some NG2, markers for oligodendrocyte precursors. Oligodendrocytes are known to express Cx47, Cx32 and Cx29, astrocytes Cx43 and Cx30. In Cx47-deficient mice, the number of coupled cells was reduced by 80%. Deletion of Cx32 or Cx29 alone did not significantly reduce the number of coupled cells, but coupling was absent in Cx32/Cx47-double-deficient mice. Cx47-ablation completely abolished coupling of oligodendrocytes to astrocytes. In Cx43-deficient animals, oligodendrocyte-astrocyte coupling was still present, but coupling to oligodendrocyte precursors was not observed. In Cx43/Cx30-double deficient mice, oligodendrocyte-to-astrocyte coupling was almost absent. Uncoupled oligodendrocytes showed a higher input resistance. We conclude that oligodendrocytes in white matter form a functional syncytium predominantly among each other dependent on Cx47 and Cx32 expression, while astrocytic connexins expression can promote the size of this network.


Assuntos
Astrócitos/fisiologia , Conexinas/metabolismo , Corpo Caloso/fisiologia , Junções Comunicantes/fisiologia , Oligodendroglia/fisiologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Antígenos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carbocianinas , Conexina 30 , Conexinas/genética , Proteína Glial Fibrilar Ácida , Técnicas In Vitro , Lisina/análogos & derivados , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Técnicas de Patch-Clamp , Proteoglicanas/metabolismo , Células-Tronco/metabolismo , Estreptavidina , Proteína beta-1 de Junções Comunicantes
17.
Nat Commun ; 10(1): 1318, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30899013

RESUMO

Macroautophagy is an evolutionarily conserved cellular maintenance program, meant to protect the brain from premature aging and neurodegeneration. How neuronal autophagy, usually loosing efficacy with age, intersects with neuronal processes mediating brain maintenance remains to be explored. Here, we show that impairing autophagy in the Drosophila learning center (mushroom body, MB) but not in other brain regions triggered changes normally restricted to aged brains: impaired associative olfactory memory as well as a brain-wide ultrastructural increase of presynaptic active zones (metaplasticity), a state non-compatible with memory formation. Mechanistically, decreasing autophagy within the MBs reduced expression of an NPY-family neuropeptide, and interfering with autocrine NPY signaling of the MBs provoked similar brain-wide metaplastic changes. Our results in an exemplary fashion show that autophagy-regulated signaling emanating from a higher brain integration center can execute high-level control over other brain regions to steer life-strategy decisions such as whether or not to form memories.


Assuntos
Envelhecimento/metabolismo , Autofagia/genética , Drosophila melanogaster/metabolismo , Memória/fisiologia , Corpos Pedunculados/metabolismo , Neuropeptídeo Y/genética , Envelhecimento/genética , Animais , Comunicação Autócrina/genética , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Corpos Pedunculados/citologia , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeo Y/deficiência , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sinapses/metabolismo , Transmissão Sináptica
18.
Elife ; 82019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31535974

RESUMO

All synapses require fusion-competent vesicles and coordinated Ca2+-secretion coupling for neurotransmission, yet functional and anatomical properties are diverse across different synapse types. We show that the presynaptic protein RIM-BP2 has diversified functions in neurotransmitter release at different central murine synapses and thus contributes to synaptic diversity. At hippocampal pyramidal CA3-CA1 synapses, RIM-BP2 loss has a mild effect on neurotransmitter release, by only regulating Ca2+-secretion coupling. However, at hippocampal mossy fiber synapses, RIM-BP2 has a substantial impact on neurotransmitter release by promoting vesicle docking/priming and vesicular release probability via stabilization of Munc13-1 at the active zone. We suggest that differences in the active zone organization may dictate the role a protein plays in synaptic transmission and that differences in active zone architecture is a major determinant factor in the functional diversity of synapses.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Camundongos , Neurotransmissores/metabolismo
19.
Alzheimers Res Ther ; 11(1): 36, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039826

RESUMO

BACKGROUND: Given the global increase in the aging population and age-related diseases, the promotion of healthy aging is one of the most crucial public health issues. This trial aims to contribute to the establishment of effective approaches to promote cognitive and brain health in older individuals with subjective cognitive decline (SCD). Presence of SCD is known to increase the risk of objective cognitive decline and progression to dementia due to Alzheimer's disease. Therefore, it is our primary goal to determine whether spermidine supplementation has a positive impact on memory performance in this at-risk group, as compared with placebo. The secondary goal is to examine the effects of spermidine intake on other neuropsychological, behavioral, and physiological parameters. METHODS: The SmartAge trial is a monocentric, randomized, double-blind, placebo-controlled phase IIb trial. The study will investigate 12 months of intervention with spermidine-based nutritional supplementation (target intervention) compared with 12 months of placebo intake (control intervention). We plan to recruit 100 cognitively normal older individuals with SCD from memory clinics, neurologists and general practitioners in private practice, and the general population. Participants will be allocated to one of the two study arms using blockwise randomization stratified by age and sex with a 1:1 allocation ratio. The primary outcome is the change in memory performance between baseline and post-intervention visits (12 months after baseline). Secondary outcomes include the change in memory performance from baseline to follow-up assessment (18 months after baseline), as well as changes in neurocognitive, behavioral, and physiological parameters (including blood and neuroimaging biomarkers), assessed at baseline and post-intervention. DISCUSSION: The SmartAge trial aims to provide evidence of the impact of spermidine supplementation on memory performance in older individuals with SCD. In addition, we will identify possible neurophysiological mechanisms of action underlying the anticipated cognitive benefits. Overall, this trial will contribute to the establishment of nutrition intervention in the prevention of Alzheimer's disease. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03094546 . Registered 29 March 2017-retrospectively registered. PROTOCOL VERSION: Based on EA1/250/16 version 1.5.


Assuntos
Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Espermidina/administração & dosagem , Biomarcadores/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico por imagem , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Humanos , Masculino , Projetos de Pesquisa
20.
Sci Rep ; 9(1): 19616, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873156

RESUMO

Aging is associated with functional alterations of synapses thought to contribute to age-dependent memory impairment (AMI). While therapeutic avenues to protect from AMI are largely elusive, supplementation of spermidine, a polyamine normally declining with age, has been shown to restore defective proteostasis and to protect from AMI in Drosophila. Here we demonstrate that dietary spermidine protects from age-related synaptic alterations at hippocampal mossy fiber (MF)-CA3 synapses and prevents the aging-induced loss of neuronal mitochondria. Dietary spermidine rescued age-dependent decreases in synaptic vesicle density and largely restored defective presynaptic MF-CA3 long-term potentiation (LTP) at MF-CA3 synapses (MF-CA3) in aged animals. In contrast, spermidine failed to protect CA3-CA1 hippocampal synapses characterized by postsynaptic LTP from age-related changes in function and morphology. Our data demonstrate that dietary spermidine attenuates age-associated deterioration of MF-CA3 synaptic transmission and plasticity. These findings provide a physiological and molecular basis for the future therapeutic usage of spermidine.


Assuntos
Envelhecimento/metabolismo , Região CA3 Hipocampal/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Fibras Musgosas Hipocampais/metabolismo , Espermidina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Região CA3 Hipocampal/patologia , Camundongos , Fibras Musgosas Hipocampais/patologia , Vesículas Sinápticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA