Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Annu Rev Cell Dev Biol ; 36: 411-440, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021826

RESUMO

Understanding human embryology has historically relied on comparative approaches using mammalian model organisms. With the advent of low-input methods to investigate genetic and epigenetic mechanisms and efficient techniques to assess gene function, we can now study the human embryo directly. These advances have transformed the investigation of early embryogenesis in nonrodent species, thereby providing a broader understanding of conserved and divergent mechanisms. Here, we present an overview of the major events in human preimplantation development and place them in the context of mammalian evolution by comparing these events in other eutherian and metatherian species. We describe the advances of studies on postimplantation development and discuss stem cell models that mimic postimplantation embryos. A comparative perspective highlights the importance of analyzing different organisms with molecular characterization and functional studies to reveal the principles of early development. This growing field has a fundamental impact in regenerative medicine and raises important ethical considerations.


Assuntos
Desenvolvimento Embrionário , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Modelos Biológicos , Filogenia , Zigoto/metabolismo
2.
Nature ; 586(7830): 612-617, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814901

RESUMO

Single-cell RNA sequencing of embryos can resolve the transcriptional landscape of development at unprecedented resolution. To date, single-cell RNA-sequencing studies of mammalian embryos have focused exclusively on eutherian species. Analysis of mammalian outgroups has the potential to identify deeply conserved lineage specification and pluripotency factors, and can extend our understanding of X dosage compensation. Metatherian (marsupial) mammals diverged from eutherians around 160 million years ago. They exhibit distinctive developmental features, including late implantation1 and imprinted X chromosome inactivation2, which is associated with expression of the XIST-like noncoding RNA RSX3. Here we perform a single-cell RNA-sequencing analysis of embryogenesis and X chromosome inactivation in a marsupial, the grey short-tailed opossum (Monodelphis domestica). We resolve the developmental trajectory and transcriptional signatures of the epiblast, primitive endoderm and trophectoderm, and identify deeply conserved lineage-specific markers that pre-date the eutherian-marsupial divergence. RSX coating and inactivation of the X chromosome occurs early and rapidly. This observation supports the hypothesis that-in organisms with early X chromosome inactivation-imprinted X chromosome inactivation prevents biallelic X silencing. We identify XSR, an RSX antisense transcript expressed from the active X chromosome, as a candidate for the regulator of imprinted X chromosome inactivation. Our datasets provide insights into the evolution of mammalian embryogenesis and X dosage compensation.


Assuntos
Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/genética , Monodelphis/embriologia , Monodelphis/genética , Análise de Célula Única , Transcriptoma/genética , Inativação do Cromossomo X/genética , Animais , Linhagem da Célula/genética , Embrião de Mamíferos/embriologia , Feminino , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Masculino , Monodelphis/classificação , RNA Antissenso/genética , RNA não Traduzido/genética , Regulação para Cima , Cromossomo X/genética
3.
Nature ; 587(7832): E1, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33067604

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
PLoS Genet ; 15(7): e1008290, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31329581

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1002900.].

6.
Genes Dev ; 27(13): 1484-94, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824539

RESUMO

In mammals, homologs that fail to synapse during meiosis are transcriptionally inactivated. This process, meiotic silencing, drives inactivation of the heterologous XY bivalent in male germ cells (meiotic sex chromosome inactivation [MSCI]) and is thought to act as a meiotic surveillance mechanism. The checkpoint protein ATM and Rad3-related (ATR) localizes to unsynapsed chromosomes, but its role in the initiation and maintenance of meiotic silencing is unknown. Here we show that ATR has multiple roles in silencing. ATR first regulates HORMA (Hop1, Rev7, and Mad2) domain protein HORMAD1/2 phosphorylation and localization of breast cancer I (BRCA1) and ATR cofactors ATR-interacting peptide (ATRIP)/topoisomerase 2-binding protein 1 (TOPBP1) at unsynapsed axes. Later, it acts as an adaptor, transducing signaling at unsynapsed axes into surrounding chromatin in a manner that requires interdependence with mediator of DNA damage checkpoint 1 (MDC1) and H2AFX. Finally, ATR catalyzes histone H2AFX phosphorylation, the epigenetic event leading to gene inactivation. Using a novel genetic strategy in which MSCI is used to silence a chosen gene in pachytene, we show that ATR depletion does not disrupt the maintenance of silencing and that silencing comprises two phases: The first is dynamic and reversible, and the second is stable and irreversible. Our work identifies a role for ATR in the epigenetic regulation of gene expression and presents a new technique for ablating gene function in the germline.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Meiose , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Cromossomos/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Fosforilação , Transporte Proteico/genética , Proteínas Repressoras/metabolismo
7.
Reproduction ; 159(4): X1, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32065737

RESUMO

The journal and the authors apologise for an error in the above titled article published in this journal (vol 144, pp 433­445). The authors inadvertently presented duplicate sperm images for XY and XESxrbO mouse testes of Fig. 6 (bottom panels). This error does not change the findings of the paper, as this figure does not give a quantitative breakdown of the proportions of different shapes.

8.
Hum Mol Genet ; 25(24): 5300-5310, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742779

RESUMO

During spermatogenesis, germ cells that fail to synapse their chromosomes or fail to undergo meiotic sex chromosome inactivation (MSCI) are eliminated via apoptosis during mid-pachytene. Previous work showed that Y-linked genes Zfy1 and Zfy2 act as 'executioners' for this checkpoint, and that wrongful expression of either gene during pachytene triggers germ cell death. Here, we show that in mice, Zfy genes are also necessary for efficient MSCI and the sex chromosomes are not correctly silenced in Zfy-deficient spermatocytes. This unexpectedly reveals a triple role for Zfy at the mid-pachytene checkpoint in which Zfy genes first promote MSCI, then monitor its progress (since if MSCI is achieved, Zfy genes will be silenced), and finally execute cells with MSCI failure. This potentially constitutes a negative feedback loop governing this critical checkpoint mechanism.


Assuntos
Proteínas de Ligação a DNA/genética , Espermatócitos/metabolismo , Fatores de Transcrição/genética , Inativação do Cromossomo X/genética , Animais , Masculino , Meiose/genética , Camundongos , Espermatócitos/crescimento & desenvolvimento , Espermatogênese/genética , Cromossomo X/genética
10.
Nature ; 487(7406): 254-8, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22722828

RESUMO

In female (XX) mammals, one of the two X chromosomes is inactivated to ensure an equal dose of X-linked genes with males (XY). X-chromosome inactivation in eutherian mammals is mediated by the non-coding RNA Xist. Xist is not found in metatherians (marsupials), and how X-chromosome inactivation is initiated in these mammals has been the subject of speculation for decades. Using the marsupial Monodelphis domestica, here we identify Rsx (RNA-on-the-silent X), an RNA that has properties consistent with a role in X-chromosome inactivation. Rsx is a large, repeat-rich RNA that is expressed only in females and is transcribed from, and coats, the inactive X chromosome. In female germ cells, in which both X chromosomes are active, Rsx is silenced, linking Rsx expression to X-chromosome inactivation and reactivation. Integration of an Rsx transgene on an autosome in mouse embryonic stem cells leads to gene silencing in cis. Our findings permit comparative studies of X-chromosome inactivation in mammals and pose questions about the mechanisms by which X-chromosome inactivation is achieved in eutherians.


Assuntos
Monodelphis/genética , Monodelphis/metabolismo , RNA/genética , RNA/metabolismo , Inativação do Cromossomo X , Cromossomo X/genética , Cromossomo X/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Camundongos , Transgenes
11.
PLoS Genet ; 11(10): e1005462, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26509888

RESUMO

Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO) and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX). We find that DNA double-strand break (DSB) foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX) levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities.


Assuntos
Pareamento Cromossômico/genética , Histonas/genética , Oócitos/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Animais , Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Feminino , Histonas/metabolismo , Humanos , Masculino , Prófase Meiótica I/genética , Camundongos , Oócitos/metabolismo , Ovário/metabolismo , Prófase/genética , Cromossomo X/genética
12.
Development ; 141(4): 855-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24496622

RESUMO

Outbred XY(Sry-) female mice that lack Sry due to the 11 kb deletion Sry(dl1Rlb) have very limited fertility. However, five lines of outbred XY(d) females with Y chromosome deletions Y(Del(Y)1Ct)-Y(Del(Y)5Ct) that deplete the Rbmy gene cluster and repress Sry transcription were found to be of good fertility. Here we tested our expectation that the difference in fertility between XO, XY(d-1) and XY(Sry-) females would be reflected in different degrees of oocyte depletion, but this was not the case. Transgenic addition of Yp genes to XO females implicated Zfy2 as being responsible for the deleterious Y chromosomal effect on fertility. Zfy2 transcript levels were reduced in ovaries of XY(d-1) compared with XY(Sry-) females in keeping with their differing fertility. In seeking the biological basis of the impaired fertility we found that XY(Sry-), XY(d-1) and XO,Zfy2 females produce equivalent numbers of 2-cell embryos. However, in XY(Sry-) and XO,Zfy2 females the majority of embryos arrested with 2-4 cells and almost no blastocysts were produced; by contrast, XY(d-1) females produced substantially more blastocysts but fewer than XO controls. As previously documented for C57BL/6 inbred XY females, outbred XY(Sry-) and XO,Zfy2 females showed frequent failure of the second meiotic division, although this did not prevent the first cleavage. Oocyte transcriptome analysis revealed major transcriptional changes resulting from the Zfy2 transgene addition. We conclude that Zfy2-induced transcriptional changes in oocytes are sufficient to explain the more severe fertility impairment of XY as compared with XO females.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Infertilidade Feminina/genética , Meiose/genética , Oócitos/metabolismo , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Proteína da Região Y Determinante do Sexo/deficiência , Fatores de Transcrição/metabolismo , Cromossomo Y/genética , Animais , Western Blotting , Cruzamento , Fase de Clivagem do Zigoto/patologia , Fase de Clivagem do Zigoto/fisiologia , Cruzamentos Genéticos , Proteínas de Ligação a DNA/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Genótipo , Modelos Lineares , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Fatores de Transcrição/genética
13.
PLoS Genet ; 10(6): e1004444, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24967676

RESUMO

Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis.


Assuntos
Proteínas de Ligação a DNA/genética , Interfase/genética , Meiose/genética , Espermatogênese/genética , Fatores de Transcrição/genética , Animais , Apoptose/fisiologia , Proteínas de Ligação a DNA/biossíntese , Feminino , Genes Ligados ao Cromossomo Y , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Espermatócitos/fisiologia , Fatores de Transcrição/biossíntese , Ativação Transcricional/genética , Cromossomo Y/genética
14.
Nat Rev Genet ; 10(3): 207-16, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19188923

RESUMO

During mammalian meiosis, synapsis of paternal and maternal chromosomes and the generation of DNA breaks are needed to allow reshuffling of parental genes. In mammals errors in synapsis are associated with a male-biased meiotic impairment, which has been attributed to a response to persisting DNA double-stranded breaks in the asynapsed chromosome segments. Recently it was discovered that the chromatin of asynapsed chromosome segments is transcriptionally silenced, providing new insights into the connection between asynapsis and meiotic impairment.


Assuntos
Pareamento Cromossômico , Cromossomos/metabolismo , Meiose , Animais , Feminino , Humanos , Masculino
15.
PLoS Genet ; 8(9): e1002900, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028340

RESUMO

Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC) and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Nucleares/genética , Proteínas/genética , Cromossomo X/genética , Cromossomo Y/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transporte Vesicular , Animais , Epigênese Genética , Feminino , Dosagem de Genes , Regulação da Expressão Gênica , Especiação Genética , Infertilidade Masculina , Masculino , Meiose/genética , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/deficiência , Proteínas/antagonistas & inibidores , Cromatina Sexual/genética , Cromatina Sexual/metabolismo , Razão de Masculinidade , Espermátides/metabolismo , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo
16.
Hum Mol Genet ; 21(12): 2631-45, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22407129

RESUMO

Mammalian ZFY genes are located on the Y chromosome, and code putative transcription factors with 12-13 zinc fingers preceded by a large acidic (activating) domain. In mice, there are two genes, Zfy1 and Zfy2, which are expressed mainly in the testis. Their transcription increases in germ cells as they enter meiosis, both are silenced by meiotic sex chromosome inactivation (MSCI) during pachytene, and Zfy2 is strongly reactivated later in spermatids. Recently, we have shown that mouse Zfy2, but not Zfy1, is involved in triggering the apoptotic elimination of specific types of sex chromosomally aberrant spermatocytes. In humans, there is a single widely transcribed ZFY gene, and there is no evidence for a specific role in the testis. Here, we characterize ZFY transcription during spermatogenesis in mice and humans. In mice, we define a variety of Zfy transcripts, among which is a Zfy2 transcript that predominates in spermatids, and a Zfy1 transcript, lacking an exon encoding approximately half of the acidic domain, which predominates prior to MSCI. In humans, we have identified a major testis-specific ZFY transcript that encodes a protein with the same short acidic domain. This represents the first evidence that ZFY has a conserved function during human spermatogenesis. We further show that, in contrast to the full acidic domain, the short domain does not activate transcription in yeast, and we hypothesize that this explains the functional difference observed between Zfy1 and Zfy2 during mouse meiosis.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores de Transcrição Kruppel-Like/genética , Testículo/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional , Processamento Alternativo , Animais , Sequência de Bases , Sítios de Ligação/genética , Sequência Conservada/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização in Situ Fluorescente , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Espermatócitos/metabolismo , Espermatogênese/genética , Testículo/citologia , Testículo/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
17.
Nat Genet ; 37(1): 41-7, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15580272

RESUMO

In Neurospora, DNA unpaired in meiosis both is silenced and induces silencing of all DNA homologous to it. This process, called meiotic silencing by unpaired DNA, is thought to protect the host genome from invasion by transposable elements. We now show that silencing of unpaired (unsynapsed) chromosome regions also takes place in the mouse during both male and female meiosis. The tumor suppressor protein BRCA1 is implicated in this silencing, mirroring its role in the meiotic silencing of the X and Y chromosomes in normal male meiosis. These findings impact on the interpretation of the relationship between synaptic errors and sterility in mammals and extend our understanding of the biology of Brca1.


Assuntos
Pareamento Cromossômico , Inativação Gênica , Meiose , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Feminino , Genes BRCA1/fisiologia , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Oócitos/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espermatócitos/fisiologia , Translocação Genética , Cromossomo X , Cromossomo Y
18.
Reproduction ; 144(4): 433-45, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22869781

RESUMO

We recently used three XO male mouse models with varying Y short-arm (Yp) gene complements, analysed at 30 days post partum, to demonstrate a Yp gene requirement for the apoptotic elimination of spermatocytes with a univalent X chromosome at the first meiotic metaphase. The three mouse models were i) XSxr(a)O in which the Yp-derived Tp(Y)1Ct(Sxr-a) sex reversal factor provides an almost complete Yp gene complement, ii) XSxr(b)O,Eif2s3y males in which Tp(Y)1Ct(Sxr-b) has a deletion completely or partially removing eight Yp genes - the Yp gene Eif2s3y has been added as a transgene to support spermatogonial proliferation, and iii) XOSry,Eif2s3y males in which the Sry transgene directs gonad development along the male pathway. In this study, we have used the same mouse models analysed at 6 weeks of age to investigate potential Yp gene involvement in spermiogenesis. We found that all three mouse models produce haploid and diploid spermatids and that the diploid spermatids showed frequent duplication of the developing acrosomal cap during the early stages. However, only in XSxr(a)O males did spermiogenesis continue to completion. Most strikingly, in XOSry,Eif2s3y males, spermatid development arrested at round spermatid step 7 so that no sperm head restructuring or tail development was observed. In contrast, in XSxr(b)O,Eif2s3y males, spermatids with substantial sperm head and tail morphogenesis could be easily found, although this was delayed compared with XSxr(a)O. We conclude that Sxr(a) (and therefore Yp) includes genetic information essential for sperm morphogenesis and that this is partially retained in Sxr(b).


Assuntos
Modelos Animais de Doenças , Fator de Iniciação 2 em Eucariotos/metabolismo , Genes Ligados ao Cromossomo Y , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/metabolismo , Proteína da Região Y Determinante do Sexo/metabolismo , Espermátides/metabolismo , Espermatogênese , Acrossomo/metabolismo , Acrossomo/patologia , Animais , Deleção Cromossômica , Cromossomos Humanos Y/metabolismo , Cruzamentos Genéticos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Deleção de Genes , Infertilidade Masculina , Masculino , Meiose , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/metabolismo , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/patologia , Proteína da Região Y Determinante do Sexo/genética , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Espermátides/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
PLoS Biol ; 7(11): e1000244, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19918361

RESUMO

Studies of mice with Y chromosome long arm deficiencies suggest that the male-specific region (MSYq) encodes information required for sperm differentiation and postmeiotic sex chromatin repression (PSCR). Several genes have been identified on MSYq, but because they are present in more than 40 copies each, their functions cannot be investigated using traditional gene targeting. Here, we generate transgenic mice producing small interfering RNAs that specifically target the transcripts of the MSYq-encoded multicopy gene Sly (Sycp3-like Y-linked). Microarray analyses performed on these Sly-deficient males and on MSYq-deficient males show a remarkable up-regulation of sex chromosome genes in spermatids. SLY protein colocalizes with the X and Y chromatin in spermatids of normal males, and Sly deficiency leads to defective repressive marks on the sex chromatin, such as reduced levels of the heterochromatin protein CBX1 and of histone H3 methylated at lysine 9. Sly-deficient mice, just like MSYq-deficient mice, have severe impairment of sperm differentiation and are near sterile. We propose that their spermiogenesis phenotype is a consequence of the change in spermatid gene expression following Sly deficiency. To our knowledge, this is the first successful targeted disruption of the function of a multicopy gene (or of any Y gene). It shows that SLY has a predominant role in PSCR, either via direct interaction with the spermatid sex chromatin or via interaction with sex chromatin protein partners. Sly deficiency is the major underlying cause of the spectrum of anomalies identified 17 y ago in MSYq-deficient males. Our results also suggest that the expansion of sex-linked spermatid-expressed genes in mouse is a consequence of the enhancement of PSCR that accompanies Sly amplification.


Assuntos
Dosagem de Genes , Células Germinativas/citologia , Meiose , Cromossomo Y , Animais , Cromossomos de Mamíferos , Regulação da Expressão Gênica , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Transgênicos , Cromossomos Sexuais , Espermátides
20.
Elife ; 112022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133274

RESUMO

DNA damage response mechanisms have meiotic roles that ensure successful gamete formation. While completion of meiotic double-strand break (DSB) repair requires the canonical RAD9A-RAD1-HUS1 (9A-1-1) complex, mammalian meiocytes also express RAD9A and HUS1 paralogs, RAD9B and HUS1B, predicted to form alternative 9-1-1 complexes. The RAD1 subunit is shared by all predicted 9-1-1 complexes and localizes to meiotic chromosomes even in the absence of HUS1 and RAD9A. Here, we report that testis-specific disruption of RAD1 in mice resulted in impaired DSB repair, germ cell depletion, and infertility. Unlike Hus1 or Rad9a disruption, Rad1 loss in meiocytes also caused severe defects in homolog synapsis, impaired phosphorylation of ATR targets such as H2AX, CHK1, and HORMAD2, and compromised meiotic sex chromosome inactivation. Together, these results establish critical roles for both canonical and alternative 9-1-1 complexes in meiotic ATR activation and successful prophase I completion.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pareamento Cromossômico , Reparo do DNA , Meiose , Animais , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA