Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pathol Res Pract ; 220: 153387, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33647865

RESUMO

PURPOSE: The distinction between multiple primary lung cancers (MPLCs) and intrapulmonary metastases has a significant impact on tumor staging and therapeutic choices. Several criteria have been proposed to solve this diagnostic issue, but a definitive consensus is still missing. We tested the efficacy of a combined clinical, histopathological and molecular ("real world") approach for the correct classification of multiple lung tumors in a selected cohort of patients. METHODS: 24 multiple lung tumors with a diagnosis of adenocarcinoma from 10 patients were retrospectively reviewed. Radiological, pathological and clinical information, including follow-up, were integrated with molecular profiling via a routine multigene panel sequencing. RESULTS: Comprehensive histologic assessment revealed readily distinguishable histologic patterns between multiple tumors suggesting unrelated lesions in 7 cases, in agreement with clinical, radiological and molecular data, thus leading to final diagnosis of MPLCs. In the remaining 3 cases, the differential diagnosis between MPLCs and intrapulmonary metastases was challenging, since the histologic features of the lesions were similar or identical. The final interpretation (2 MPLCs and 1 most likely intrapulmonary metastases) was reached thanks to the integration of all available data, and was confirmed by follow-up. CONCLUSIONS: A multidisciplinary approach including a routinely affordable multigene panel sequencing is a useful tool to discriminate MPLCs from intrapulmonary metastases in multiple lung nodules sharing the adenocarcinoma histotype.


Assuntos
Adenocarcinoma de Pulmão/patologia , Adenocarcinoma/patologia , Neoplasias Pulmonares/patologia , Neoplasias Primárias Múltiplas/patologia , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/genética , Adenocarcinoma/secundário , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/genética , Idoso , Biomarcadores Tumorais/genética , Biópsia , Diagnóstico Diferencial , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Pessoa de Meia-Idade , Neoplasias Primárias Múltiplas/diagnóstico por imagem , Neoplasias Primárias Múltiplas/genética , Valor Preditivo dos Testes , Estudos Retrospectivos , Transcriptoma
2.
Cancers (Basel) ; 11(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621206

RESUMO

Genomic studies performed through liquid biopsies widely elucidated the evolutionary trajectory of RAS mutant clones under the selective pressure of EGFR inhibitors in patients with wild type RAS primary colorectal tumors. Similarly, the disappearance of RAS mutant clones in plasma has been more recently reported in some patients with primary RAS mutant cancers, supporting for the first time an unexpected negative selection of RAS mutations during the clonal evolution of mCRC. To date, the extent of conversion to RAS wild type disease at the time of progression has not been clarified yet. As a proof of concept, we prospectively enrolled mCRC patients progressing under anti-VEGF based treatments. Idylla™ system was used to screen RAS mutations in plasma and the wild type status of RAS was further confirmed through IT-PGM (Ion Torrent Personal Genome Machine) sequencing. RAS was found mutant in 55% of cases, retaining the same plasma mutation as in the primary tumor at diagnosis, while it was found wild-type in 45%. Four patients testing negative for RAS mutations in plasma at the time of progression of disease (PD) were considered eligible for treatment with EGFR inhibitors and treated accordingly, achieving a clinical benefit. We here propose a hypothetical algorithm that accounts for the transient disappearance of RAS mutant clones over time, which might extend the continuum of care of mutant RAS colorectal cancer patients through the delivery of a further line of therapy.

3.
PeerJ ; 7: e6661, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31065452

RESUMO

BACKGROUND: Conventional methods used to identify BRCA1 and BRCA2 germline mutations in hereditary cancers, such as Sanger sequencing/multiplex ligation-dependent probe amplification (MLPA), are time-consuming and expensive, due to the large size of the genes. The recent introduction of next-generation sequencing (NGS) benchtop platforms offered a powerful alternative for mutation detection, dramatically improving the speed and the efficiency of DNA testing. Here we tested the performance of the Ion Torrent PGM platform with the Ion AmpliSeq BRCA1 and BRCA2 Panel in our clinical routine of breast/ovarian hereditary cancer syndrome assessment. METHODS: We first tested the NGS approach in a cohort of 11 patients (training set) who had previously undergone genetic diagnosis in our laboratory by conventional methods. Then, we applied the optimized pipeline to the consecutive cohort of 136 uncharacterized probands (validation set). RESULTS: By minimal adjustments in the analytical pipeline of Torrent Suite Software we obtained a 100% concordance with Sanger results regarding the identification of single nucleotide alterations, insertions, and deletions with the exception of three large genomic rearrangements (LGRs) contained in the training set. The optimized pipeline applied to the validation set (VS), identified pathogenic and polymorphic variants, including a novel BRCA2 pathogenic variant at exon 3, 100% of which were confirmed by Sanger in their correct zygosity status. To identify LGRs, all negative samples of the VS were subjected to MLPA analysis. DISCUSSION: Our experience strongly supports that the Ion Torrent PGM technology in BRCA1 and BRCA2 germline variant identification, combined with MLPA analysis, is highly sensitive, easy to use, faster, and cheaper than traditional (Sanger sequencing/MLPA) approaches.

4.
PeerJ ; 7: e7972, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31741787

RESUMO

BACKGROUND: Genetic testing for BRCA1/2 germline mutations in hereditary breast/ovarian cancer patients requires screening for single nucleotide variants, small insertions/deletions and large genomic rearrangements (LGRs). These studies have long been run by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). The recent introduction of next-generation sequencing (NGS) platforms dramatically improved the speed and the efficiency of DNA testing for nucleotide variants, while the possibility to correctly detect LGRs by this mean is still debated. The purpose of this study was to establish whether and to which extent the development of an analytical algorithm could help us translating NGS sequencing via an Ion Torrent PGM platform into a tool suitable to identify LGRs in hereditary breast-ovarian cancer patients. METHODS: We first used NGS data of a group of three patients (training set), previously screened in our laboratory by conventional methods, to develop an algorithm for the calculation of the dosage quotient (DQ) to be compared with the Ion Reporter (IR) analysis. Then, we tested the optimized pipeline with a consecutive cohort of 85 uncharacterized probands (validation set) also subjected to MLPA analysis. Characterization of the breakpoints of three novel BRCA1 LGRs was obtained via long-range PCR and direct sequencing of the DNA products. RESULTS: In our cohort, the newly defined DQ-based algorithm detected 3/3 BRCA1 LGRs, demonstrating 100% sensitivity and 100% negative predictive value (NPV) (95% CI [87.6-99.9]) compared to 2/3 cases detected by IR (66.7% sensitivity and 98.2% NPV (95% CI [85.6-99.9])). Interestingly, DQ and IR shared 12 positive results, but exons deletion calls matched only in five cases, two of which confirmed by MLPA. The breakpoints of the 3 novel BRCA1 deletions, involving exons 16-17, 21-22 and 20, have been characterized. CONCLUSIONS: Our study defined a DQ-based algorithm to identify BRCA1 LGRs using NGS data. Whether confirmed on larger data sets, this tool could guide the selection of samples to be subjected to MLPA analysis, leading to significant savings in time and money.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA