Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788190

RESUMO

MOTIVATION: Although the human microbiome plays a key role in health and disease, the biological mechanisms underlying the interaction between the microbiome and its host are incompletely understood. Integration with other molecular profiling data offers an opportunity to characterize the role of the microbiome and elucidate therapeutic targets. However, this remains challenging to the high dimensionality, compositionality, and rare features found in microbiome profiling data. These challenges necessitate the use of methods that can achieve structured sparsity in learning cross-platform association patterns. RESULTS: We propose Tree-Aggregated factor RegressiOn (TARO) for the integration of microbiome and metabolomic data. We leverage information on the taxonomic tree structure to flexibly aggregate rare features. We demonstrate through simulation studies that TARO accurately recovers a low-rank coefficient matrix and identifies relevant features. We applied TARO to microbiome and metabolomic profiles gathered from subjects being screened for colorectal cancer to understand how gut microrganisms shape intestinal metabolite abundances. AVAILABILITY AND IMPLEMENTATION: The R package TARO implementing the proposed methods is available online at https://github.com/amishra-stats/taro-package.


Assuntos
Microbiota , Humanos , Software , Metabolômica/métodos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/metabolismo , Microbioma Gastrointestinal , Algoritmos
2.
J Biol Chem ; 299(9): 105185, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37611830

RESUMO

A substantial body of evidence has established the contributions of both mitochondrial dynamics and lipid metabolism to the pathogenesis of diabetic kidney disease (DKD). However, the precise interplay between these two key metabolic regulators of DKD is not fully understood. Here, we uncover a link between mitochondrial dynamics and lipid metabolism by investigating the role of carbohydrate-response element-binding protein (ChREBP), a glucose-responsive transcription factor and a master regulator of lipogenesis, in kidney podocytes. We find that inducible podocyte-specific knockdown of ChREBP in diabetic db/db mice improves key biochemical and histological features of DKD in addition to significantly reducing mitochondrial fragmentation. Because of the critical role of ChREBP in lipid metabolism, we interrogated whether and how mitochondrial lipidomes play a role in ChREBP-mediated mitochondrial fission. Our findings suggest a key role for a family of ether phospholipids in ChREBP-induced mitochondrial remodeling. We find that overexpression of glyceronephosphate O-acyltransferase, a critical enzyme in the biosynthesis of plasmalogens, reverses the protective phenotype of ChREBP deficiency on mitochondrial fragmentation. Finally, our data also points to Gnpat as a direct transcriptional target of ChREBP. Taken together, our results uncover a distinct mitochondrial lipid signature as the link between ChREBP-induced mitochondrial dynamics and progression of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Regulação da Expressão Gênica , Rim/metabolismo , Lipidômica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Anal Chem ; 94(4): 1925-1931, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35060703

RESUMO

Sensitive, rapid, and meaningful diagnostic tools for prostate cancer (PC) screening are urgently needed. Paper spray ionization mass spectrometry (PSI-MS) is an emerging rapid technology for detecting biomarker and disease diagnoses. Due to lack of chromatography and difficulties in employing tandem MS, PSI-MS-based untargeted metabolomics often suffers from increased ion suppression and subsequent feature detection, affecting chemometric methods for disease classification. This study first evaluated the data-driven soft independent modeling of class analogy (DD-SIMCA) model to analyze PSI-MS-based global metabolomics of a urine data matrix to classify PC. The efficiency of DD-SIMCA was analyzed based on the sensitivity and specificity parameters that showed 100% correct classification of the training set, based on only PC and test set samples, based on normal and PC. This analytical methodology is easy to interpret and efficient and does not require any prior information from the healthy individual. This new application of DD-SIMCA in PSI-MS-based metabolomics for PC disease classification could also be extended to other diseases and opens a rapid strategy to discriminate against health problems.


Assuntos
Metabolômica , Neoplasias da Próstata , Biomarcadores , Detecção Precoce de Câncer , Humanos , Masculino , Espectrometria de Massas , Metabolômica/métodos , Neoplasias da Próstata/diagnóstico
4.
Anal Chem ; 93(22): 7774-7780, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34043339

RESUMO

The limitation of prostate specific antigen (PSA) for prostate cancer (PC) diagnosis is well-recognized. The Gleason score (GS) has been the most widely used grading system for prostate tumor differentiation and represents the best-established prognostic indicator for prostate cancer progression. However, a rapid and sensitive noninvasive diagnostic marker that differentiates GS-based prostate cancer disease progression is needed. As PC is becoming a leading cause of cancer related death for men in the U.S. and worldwide, an immediate need exists for an improved, sensitive, noninvasive, and rapid diagnostic test for PC screening. Here, we employed paper spray ionization-mass spectrometry (PSI MS)-based global metabolomics of urine liquid biopsies to distinguish between healthy (negative for any prostate specific health problems) and progressive PC states (low grade PC such as GS6 and high-grade PC such as GS7, GS8, and GS9). For PSI-MS-based direct untargeted metabolic investigation, a raw urine sample was directly pipetted onto a triangular paper substrate, without any additional sample preparation. Multivariate statistical analysis revealed distinct GS-specific metabolic signatures compared to a healthy control. Variable importance in projection from partial least-squares-discriminant analysis showed distinct metabolic patterns that were correlatively elevated with progressive disease and could serve as biomarkers for diagnosis of prostate cancer risk categorization.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Progressão da Doença , Humanos , Masculino , Espectrometria de Massas , Gradação de Tumores , Neoplasias da Próstata/diagnóstico
5.
Nucleic Acids Res ; 47(15): 7734-7752, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31350900

RESUMO

DAXX displays complex biological functions. Remarkably, DAXX overexpression is a common feature in diverse cancers, which correlates with tumorigenesis, disease progression and treatment resistance. Structurally, DAXX is modular with an N-terminal helical bundle, a docking site for many DAXX interactors (e.g. p53 and ATRX). DAXX's central region folds with the H3.3/H4 dimer, providing a H3.3-specific chaperoning function. DAXX has two functionally critical SUMO-interacting motifs. These modules are connected by disordered regions. DAXX's structural features provide a framework for deciphering how DAXX mechanistically imparts its functions and how its activity is regulated. DAXX modulates transcription through binding to transcription factors, epigenetic modifiers, and chromatin remodelers. DAXX's localization in the PML nuclear bodies also plays roles in transcriptional regulation. DAXX-regulated genes are likely important effectors of its biological functions. Deposition of H3.3 and its interactions with epigenetic modifiers are likely key events for DAXX to regulate transcription, DNA repair, and viral infection. Interactions between DAXX and its partners directly impact apoptosis and cell signaling. DAXX's activity is regulated by posttranslational modifications and ubiquitin-dependent degradation. Notably, the tumor suppressor SPOP promotes DAXX degradation in phase-separated droplets. We summarize here our current understanding of DAXX's complex functions with a focus on how it promotes oncogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteínas Nucleares/genética , Processamento de Proteína Pós-Traducional , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Cromatina/química , Proteínas Correpressoras , Humanos , Chaperonas Moleculares , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Transdução de Sinais , Sumoilação , Transcrição Gênica , Ubiquitinação
6.
J Proteome Res ; 19(5): 2080-2091, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32216312

RESUMO

Spectrometric methods with rapid biomarker detection capacity through untargeted metabolomics are becoming essential in the clinical cancer research. Liquid chromatography-mass spectrometry (LC-MS) is a rapidly developing metabolomic-based biomarker technique due to its high sensitivity, reproducibility, and separation efficiency. However, its translation to clinical diagnostics is often limited due to long data acquisition times (∼20 min/sample) and laborious sample extraction procedures when employed for large-scale metabolomics studies. Here, we developed a segmented flow approach coupled with high-resolution mass spectrometry (SF-HRMS) for untargeted metabolomics, which has the capability to acquire data in less than 1.5 min/sample with robustness and reproducibility relative to LC-HRMS. The SF-HRMS results demonstrate the capability for screening metabolite-based urinary biomarkers associated with prostate cancer (PCa). The study shows that SF-HRMS-based global metabolomics has the potential to evolve into a rapid biomarker screening tool for clinical research.


Assuntos
Detecção Precoce de Câncer , Neoplasias da Próstata , Biomarcadores , Humanos , Masculino , Espectrometria de Massas , Metabolômica , Neoplasias da Próstata/diagnóstico , Reprodutibilidade dos Testes
7.
Biol Blood Marrow Transplant ; 26(10): 1803-1810, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32592859

RESUMO

Chronic graft-versus-host disease (cGVHD) remains a significant late effect issue for allogeneic hematopoietic cell transplantation (allo-HCT) survivors, contributing to morbidity and mortality. The etiology of cGVHD is not well elucidated. Owing to a lack of early diagnostic tests and pathophysiology ambiguity, targeted treatments remain limited. Biomarkers for prediction, control response, or prognostication have not yet been identified. Metabolomics, the quantification of metabolites, is a potential biomarker of cGVHD but has not been evaluated in this population. In this study, we examined global metabolites of stored plasma to identify differentially expressed metabolites of individuals discordant for cGVHD following allo-HCT. A descriptive, comparative, cross-sectional study design was used to examine differentially expressed metabolites of plasma samples obtained from 40 adult allo-HCT recipients (20 with cGVHD and 20 without cGVHD) from 2 parent studies. Metabolomics profiling was conducted at the University of Florida's Southeast Center for Integrative Metabolomics. Full experimental methods followed a previously published method. All statistical analyses were performed by a PhD-prepared, trained bioinformatics statistician. There were 10 differentially expressed metabolites between participants with cGVHD and those without cGVHD. Differential metabolites included those related to energy metabolism (n = 3), amino acid metabolism (n = 3), lipid metabolism (n = 2), caffeine metabolism (n = 1), and neurotransmission (n = 1). Serotonin had the greatest fold change (21.01). This study suggests that cGVHD may be associated with expanded cellular energy and potentially mitochondrial dysfunction. The differential metabolic profile between patients with and without cGVHD indicates metabolic perturbations that merit further exploration as potential biomarkers of cGVHD. These findings support the need for further examination using a larger, prospective study design to identify metabolomic risk factors that may signal the need for earlier preventive measures and earlier treatment to reduce cGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Adulto , Doença Crônica , Estudos Transversais , Doença Enxerto-Hospedeiro/diagnóstico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Metabolômica , Estudos Prospectivos
8.
Anal Chem ; 91(23): 14784-14791, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682425

RESUMO

Child malnutrition (CM) is a global public health problem. It contributes to poor health in one in four children under five years worldwide and causes serious health problems in children, including stunted, wasted, and overweight growth. These serious public health issues lead to a higher chance of living in poverty in adulthood. Malnutrition is related with reduced economic productivity and increases the serious national and international burden. Currently, there is no meaningful therapeutic intervention of CM, and the use of different therapeutic foods has shown poor outcomes among supplemented malnourished children. The role of metabolites and lipids has been extensively recognized as early determinants of child health, but their contribution in CM and its pathobiology are poorly understood. This perspective provides a most recent update on these aspects. After briefly introducing the disciplines of metabolomics and lipidomics, we describe a mass spectrometry-based metabolic workflow for analysis of both metabolites and lipids and summarize several recent applications of metabolomics and lipidomics in CM. Finally, we discuss the future directions of the field toward the development of meaningful interventions for CM through metabolomics and lipidomics advances.


Assuntos
Transtornos da Nutrição Infantil/metabolismo , Lipidômica , Lipídeos/análise , Metaboloma , Criança , Transtornos da Nutrição Infantil/diagnóstico , Transtornos da Nutrição Infantil/fisiopatologia , Transtornos da Nutrição Infantil/prevenção & controle , Pré-Escolar , Dieta/métodos , Humanos , Lipídeos/classificação , Espectrometria de Massas
9.
Anal Bioanal Chem ; 409(26): 6173-6180, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28844081

RESUMO

Metabolism, downstream effectors of genomics, transcriptomics, and proteomics, can determine the potential of phenotype of an organism including plants. Profiling the global scenario of metabolism requires optimization of different solvent extraction methods. Here, we report an approach comparing three different metabolite extraction strategies, including ammonium acetate/methanol (AAM), water/methanol (WM), and sodium phosphate/methanol (PM) in soybean plant using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). Interestingly, both AAM and WM methods were found to cover a wider range of metabolites and provide better detection of molecular features than the PM method. Various clustering analyses based on multivariate statistical tools revealed that both AAM and WM methods showed tight and overlapping extraction strategy compared with the PM method. Using MatLab-based Mahalanobis distance (D M) calculation, statistically significant score plot separation was observed between AAM and PM, as well as WM and PM. However, no significant separation was observed between AAM and WM, which is expected from the overlap of principal component scores for these two methods. Using differential metabolite expression analysis, we identified that a large number of metabolites were extracted at a significantly higher level using AAM vs. PM. These comparative extraction methods suggest that AAM can effectively be applied for an LC/MS-based plant metabolomics profile study. Graphical abstract Step-by-step outline of three different metabolite extraction methods and data analysis.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Glycine max/química , Metaboloma , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Fracionamento Químico/métodos , Análise Multivariada , Solventes , Glycine max/metabolismo
10.
Anal Bioanal Chem ; 406(24): 5997-6005, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25012359

RESUMO

The culture of sugarcane leaf explant onto culture induction medium triggers the stimulation of cell metabolism into both embryogenic and non-embryogenic callus tissues. Previous analyses demonstrated that embryogenic and non-embryogenic callus tissues have distinct metabolic profiles. This study is the follow-up to understand the biochemical relationship between the nutrient media and callus tissues using one-dimensional (1D (1)H) and two-dimensional (2D (1)H-(13)C) NMR spectroscopy followed by principal component analysis (PCA). 1D (1)H spectral comparisons of fresh unspent media (FM), embryogenic callus media (ECM), non-embryogenic callus media (NECM), embryogenic callus (EC), and non-embryogenic callus (NEC), showed different metabolic relationships between callus tissues and media. Based on metabolite fold change analysis, significantly changing sugar compounds such as glucose, fructose, sucrose, and maltose were maintained in large quantities by EC only. Significantly different amino acid compounds such as valine, leucine, alanine, threonine, asparagine, and glutamine and different organic acid derivatives such as lactate, 2-hydroxyisobutyrate, 4-aminobutyrate, malonate, and choline were present in EC, NEC, and NECM, which indicates that EC maintained these nutrients, while NEC either maintained or secreted the metabolites. These media and callus-specific results suggest that EC and NEC utilize and/or secrete media nutrients differently.


Assuntos
Meios de Cultura/metabolismo , Imageamento por Ressonância Magnética/métodos , Metabolômica/métodos , Saccharum/química , Saccharum/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Carboidratos/análise , Técnicas de Cultura de Células , Meios de Cultura/química , Saccharum/crescimento & desenvolvimento
11.
ACS Nano ; 18(3): 1865-1881, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206058

RESUMO

Nanoparticle delivery to solid tumors is a prime challenge in nanomedicine. Here, we approach this challenge through the lens of biogeochemistry, the field that studies the flow of chemical elements within ecosystems as manipulated by living cellular organisms and their environments. We leverage biogeochemistry concepts related to gold cycling against pancreatic cancer, considering mammalian organisms as drivers for gold nanoparticle biosynthesis. Sequestration of gold nanoparticles within tumors has been demonstrated as an effective strategy to enhance radiotherapy; however, the desmoplasia of pancreatic cancer impedes nanoparticle delivery. Our strategy overcomes this barrier by applying an atomic-scale agent, ionic gold, for intratumoral gold nanoparticle biosynthesis. Our comprehensive studies showed the cancer-specific synthesis of gold nanoparticles from externally delivered gold ions in vitro and in a murine pancreatic cancer model in vivo; a substantial colocalization of gold nanoparticles (GNPs) with cancer cell nuclei in vitro and in vivo; a strong radiosensitization effect by the intracellularly synthesized GNPs; a uniform distribution of in situ synthesized GNPs throughout the tumor volume; a nearly 40-day total suppression of tumor growth in animal models of pancreatic cancer treated with a combination of gold ions and radiation that was also associated with a significantly higher median survival versus radiation alone (235 vs 102 days, respectively).


Assuntos
Nanopartículas Metálicas , Neoplasias Pancreáticas , Animais , Camundongos , Ouro/química , Ecossistema , Nanopartículas Metálicas/química , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Íons , Mamíferos
12.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293232

RESUMO

Purpose: Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, CLPP activators which reduce OXPHOS indirectly and have demonstrated safety in patients. Experimental Design: We assessed CLPP expression in UM patient samples. We tested the effects of imipridones (ONC201, ONC212) on the growth, survival, signaling and metabolism of UM cell lines in vitro, and for therapeutic effects in vivo in UM liver metastasis models. Results: CLPP expression was confirmed in primary and mUM patient samples. ONC201/212 treatment of UM cell lines in vitro decreased OXPHOS effectors, inhibited cell growth and migration, and induced apoptosis. ONC212 increased metabolic stress and apoptotic pathways, inhibited amino acid metabolism, and induced cell death-related lipids. ONC212 also decreased tumor burden and increased survival in vivo in two UM liver metastasis models. Conclusion: Imipridones are a promising strategy for further testing and development in mUM.

13.
Res Sq ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352620

RESUMO

Ion suppression is a major problem in mass spectrometry (MS)-based metabolomics; it can dramatically decrease measurement accuracy, precision, and signal-to-noise sensitivity. Here we report a new method, the IROA TruQuant Workflow, that uses a stable isotope-labeled internal standard (IROA-IS) plus novel companion algorithms to 1) measure and correct for ion suppression, and 2) perform Dual MSTUS normalization of MS metabolomic data. We have evaluated the method across ion chromatography (IC), hydrophilic interaction liquid chromatography (HILIC), and reverse phase liquid chromatography (RPLC)-MS systems in both positive and negative ionization modes, with clean and unclean ion sources, and across different biological matrices. Across the broad range of conditions tested, all detected metabolites exhibited ion suppression ranging from 1% to 90+% and coefficient of variations ranging from 1% to 20%, but the Workflow and companion algorithms were highly effective at nulling out that suppression and error. Overall, the Workflow corrects ion suppression across diverse analytical conditions and produces robust normalization of non-targeted metabolomic data.

14.
Cancer Res ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640229

RESUMO

Clear cell renal cell carcinoma (ccRCC), the most common type of kidney cancer, is largely incurable in the metastatic setting. ccRCC is characterized by excessive lipid accumulation that protects cells from stress and promotes tumor growth, suggesting that the underlying regulators of lipid storage could represent potential therapeutic targets. Here, we evaluated the regulatory roles of GPR1 and CMKLR1, two G-protein coupled receptors of the pro-tumorigenic adipokine chemerin that is involved in ccRCC lipid metabolism. Both genetic and pharmacological suppression of either receptor suppressed lipid formation and induced multiple forms of cell death, including apoptosis, ferroptosis and autophagy, significantly impeding ccRCC growth in cell lines and patient derived xenograft (PDX) models. Comprehensive lipidomic and transcriptomic profiling of receptor competent and depleted cells revealed overlapping and unique signaling of the receptors granting control over triglyceride synthesis, ceramide production, and fatty acid saturation and class production. Mechanistically, the receptors both enforced suppression of the triglyceride lipase ATGL but also demonstrated distinct functions, such as the unique ability of CMKLR1 to control lipid uptake through regulation of SREBP1c and the CD36 scavenger receptor. Treating PDX models with the CMKLR1-targeting small molecule α-NETA led to a dramatic reduction of tumor growth, lipid storage, and clear cell morphology. Together, these findings provide mechanistic insight into lipid regulation in ccRCC and identify a targetable axis at the core of the histological definition of this tumor that could be exploited therapeutically.

15.
Nat Commun ; 15(1): 79, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167301

RESUMO

How cells coordinate cell cycling with cell survival and death remains incompletely understood. Here, we show that cell cycle arrest has a potent suppressive effect on ferroptosis, a form of regulated cell death induced by overwhelming lipid peroxidation at cellular membranes. Mechanistically, cell cycle arrest induces diacylglycerol acyltransferase (DGAT)-dependent lipid droplet formation to sequester excessive polyunsaturated fatty acids (PUFAs) that accumulate in arrested cells in triacylglycerols (TAGs), resulting in ferroptosis suppression. Consequently, DGAT inhibition orchestrates a reshuffling of PUFAs from TAGs to phospholipids and re-sensitizes arrested cells to ferroptosis. We show that some slow-cycling antimitotic drug-resistant cancer cells, such as 5-fluorouracil-resistant cells, have accumulation of lipid droplets and that combined treatment with ferroptosis inducers and DGAT inhibitors effectively suppresses the growth of 5-fluorouracil-resistant tumors by inducing ferroptosis. Together, these results reveal a role for cell cycle arrest in driving ferroptosis resistance and suggest a ferroptosis-inducing therapeutic strategy to target slow-cycling therapy-resistant cancers.


Assuntos
Ferroptose , Neoplasias , Humanos , Gotículas Lipídicas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Peroxidação de Lipídeos , Triglicerídeos/metabolismo , Pontos de Checagem do Ciclo Celular , Neoplasias/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico
16.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37904958

RESUMO

Motivation: Although the human microbiome plays a key role in health and disease, the biological mechanisms underlying the interaction between the microbiome and its host are incompletely understood. Integration with other molecular profiling data offers an opportunity to characterize the role of the microbiome and elucidate therapeutic targets. However, this remains challenging to the high dimensionality, compositionality, and rare features found in microbiome profiling data. These challenges necessitate the use of methods that can achieve structured sparsity in learning cross-platform association patterns. Results: We propose Tree-Aggregated factor RegressiOn (TARO) for the integration of microbiome and metabolomic data. We leverage information on the phylogenetic tree structure to flexibly aggregate rare features. We demonstrate through simulation studies that TARO accurately recovers a low-rank coefficient matrix and identifies relevant features. We applied TARO to microbiome and metabolomic profiles gathered from subjects being screened for colorectal cancer to understand how gut microrganisms shape intestinal metabolite abundances. Availability and implementation: The R package TARO implementing the proposed methods is available online at https://github.com/amishra-stats/taro-package .

17.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36472914

RESUMO

Hepatocellular carcinoma (HCC) is the most common lethal form of liver cancer. Apart from surgical removal and transplantation, other treatments have not yet been well established for patients with HCC. In this study, we found that carboxylesterase 1 (CES1) is expressed at various levels in HCC. We further revealed that blockage of CES1 by pharmacological and genetical approaches leads to altered lipid profiles that are directly linked to impaired mitochondrial function. Mechanistically, lipidomic analyses indicated that lipid signaling molecules, including polyunsaturated fatty acids (PUFAs), which activate PPARα/γ, were dramatically reduced upon CES1 inhibition. As a result, the expression of SCD, a PPARα/γ target gene involved in tumor progression and chemoresistance, was significantly downregulated. Clinical analysis demonstrated a strong correlation between the protein levels of CES1 and SCD in HCC. Interference with lipid signaling by targeting the CES1-PPARα/γ-SCD axis sensitized HCC cells to cisplatin treatment. As a result, the growth of HCC xenograft tumors in NU/J mice was potently slowed by coadministration of cisplatin and CES1 inhibition. Our results, thus, suggest that CES1 is a promising therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Metabolismo dos Lipídeos/genética , Cisplatino/uso terapêutico , PPAR alfa/metabolismo , Lipídeos , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/uso terapêutico
18.
Acta Neuropathol Commun ; 11(1): 38, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899402

RESUMO

Medulloblastoma (MB) develops through various genetic, epigenetic, and non-coding (nc) RNA-related mechanisms, but the roles played by ncRNAs, particularly circular RNAs (circRNAs), remain poorly defined. CircRNAs are increasingly recognized as stable non-coding RNA therapeutic targets in many cancers, but little is known about their function in MBs. To determine medulloblastoma subgroup-specific circRNAs, publicly available RNA sequencing (RNA-seq) data from 175 MB patients were interrogated to identify circRNAs that differentiate between MB subgroups. circ_63706 was identified as sonic hedgehog (SHH) group-specific, with its expression confirmed by RNA-FISH analysis in clinical tissue samples. The oncogenic function of circ_63706 was characterized in vitro and in vivo. Further, circ_63706-depleted cells were subjected to RNA-seq and lipid profiling to identify its molecular function. Finally, we mapped the circ_63706 secondary structure using an advanced random forest classification model and modeled a 3D structure to identify its interacting miRNA partner molecules. Circ_63706 regulates independently of the host coding gene pericentrin (PCNT), and its expression is specific to the SHH subgroup. circ_63706-deleted cells implanted into mice produced smaller tumors, and mice lived longer than parental cell implants. At the molecular level, circ_63706-deleted cells elevated total ceramide and oxidized lipids and reduced total triglyceride. Our study implicates a novel oncogenic circular RNA in the SHH medulloblastoma subgroup and establishes its molecular function and potential as a future therapeutic target.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , MicroRNAs , Criança , Humanos , Animais , Camundongos , RNA Circular/genética , Meduloblastoma/genética , Proteínas Hedgehog/metabolismo , MicroRNAs/genética , Neoplasias Cerebelares/genética
19.
Front Microbiol ; 14: 1251065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901834

RESUMO

Introduction: SARS-CoV-2 subverts host cell processes to facilitate rapid replication and dissemination, and this leads to pathological inflammation. Methods: We used niclosamide (NIC), a poorly soluble anti-helminth drug identified initially for repurposed treatment of COVID-19, which activates the cells' autophagic and lipophagic processes as a chemical probe to determine if it can modulate the host cell's total lipid profile that would otherwise be either amplified or reduced during SARS-CoV-2 infection. Results: Through parallel lipidomic and transcriptomic analyses we observed massive reorganization of lipid profiles of SARS-CoV-2 infected Vero E6 cells, especially with triglycerides, which were elevated early during virus replication, but decreased thereafter, as well as plasmalogens, which were elevated at later timepoints during virus replication, but were also elevated under normal cell growth. These findings suggested a complex interplay of lipid profile reorganization involving plasmalogen metabolism. We also observed that NIC treatment of both low and high viral loads does not affect virus entry. Instead, NIC treatment reduced the abundance of plasmalogens, diacylglycerides, and ceramides, which we found elevated during virus infection in the absence of NIC, resulting in a significant reduction in the production of infectious virions. Unexpectedly, at higher viral loads, NIC treatment also resulted in elevated triglyceride levels, and induced significant changes in phospholipid metabolism. Discussion: We posit that future screens of approved or new partner drugs should prioritize compounds that effectively counter SARS-CoV-2 subversion of lipid metabolism, thereby reducing virus replication, egress, and the subsequent regulation of key lipid mediators of pathological inflammation.

20.
Oncogene ; 42(14): 1117-1131, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813854

RESUMO

Neoadjuvant chemotherapy (NACT) used for triple negative breast cancer (TNBC) eradicates tumors in ~45% of patients. Unfortunately, TNBC patients with substantial residual cancer burden have poor metastasis free and overall survival rates. We previously demonstrated mitochondrial oxidative phosphorylation (OXPHOS) was elevated and was a unique therapeutic dependency of residual TNBC cells surviving NACT. We sought to investigate the mechanism underlying this enhanced reliance on mitochondrial metabolism. Mitochondria are morphologically plastic organelles that cycle between fission and fusion to maintain mitochondrial integrity and metabolic homeostasis. The functional impact of mitochondrial structure on metabolic output is highly context dependent. Several chemotherapy agents are conventionally used for neoadjuvant treatment of TNBC patients. Upon comparing mitochondrial effects of conventional chemotherapies, we found that DNA-damaging agents increased mitochondrial elongation, mitochondrial content, flux of glucose through the TCA cycle, and OXPHOS, whereas taxanes instead decreased mitochondrial elongation and OXPHOS. The mitochondrial effects of DNA-damaging chemotherapies were dependent on the mitochondrial inner membrane fusion protein optic atrophy 1 (OPA1). Further, we observed heightened OXPHOS, OPA1 protein levels, and mitochondrial elongation in an orthotopic patient-derived xenograft (PDX) model of residual TNBC. Pharmacologic or genetic disruption of mitochondrial fusion and fission resulted in decreased or increased OXPHOS, respectively, revealing longer mitochondria favor oxphos in TNBC cells. Using TNBC cell lines and an in vivo PDX model of residual TNBC, we found that sequential treatment with DNA-damaging chemotherapy, thus inducing mitochondrial fusion and OXPHOS, followed by MYLS22, a specific inhibitor of OPA1, was able to suppress mitochondrial fusion and OXPHOS and significantly inhibit regrowth of residual tumor cells. Our data suggest that TNBC mitochondria can optimize OXPHOS through OPA1-mediated mitochondrial fusion. These findings may provide an opportunity to overcome mitochondrial adaptations of chemoresistant TNBC.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Mitocôndrias/metabolismo , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA