Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35743016

RESUMO

An obstacle to effective uniform treatment of glioblastoma, especially at recurrence, is genetic and cellular intertumoral heterogeneity. Hence, personalized strategies are necessary, as are means to stratify potential targeted therapies in a clinically relevant timeframe. Functional profiling of drug candidates against patient-derived glioblastoma organoids (PD-GBO) holds promise as an empirical method to preclinically discover potentially effective treatments of individual tumors. Here, we describe our establishment of a PD-GBO-based functional profiling platform and the results of its application to four patient tumors. We show that our PD-GBO model system preserves key features of individual patient glioblastomas in vivo. As proof of concept, we tested a panel of 41 FDA-approved drugs and were able to identify potential treatment options for three out of four patients; the turnaround from tumor resection to discovery of treatment option was 13, 14, and 15 days, respectively. These results demonstrate that this approach is a complement and, potentially, an alternative to current molecular profiling efforts in the pursuit of effective personalized treatment discovery in a clinically relevant time period. Furthermore, these results warrant the use of PD-GBO platforms for preclinical identification of new drugs against defined morphological glioblastoma features.


Assuntos
Glioblastoma , Glioblastoma/patologia , Humanos , Modelos Biológicos , Recidiva Local de Neoplasia/tratamento farmacológico , Organoides/patologia
2.
Am J Physiol Endocrinol Metab ; 302(9): E1044-54, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22318954

RESUMO

This study aimed to elucidate the role of the AT(2) receptor (AT(2)R), which is expressed and upregulated in the adrenal zona glomerulosa (ZG) under conditions of increased aldosterone production. We developed a novel transgenic rat (TGR; TGRCXmAT(2)R) that overexpresses the AT(2)R in the adrenal gland, heart, kidney, brain, skeletal muscle, testes, lung, spleen, aorta, and vein. As a consequence the total angiotensin II (Ang II) binding sites increased 7.8-fold in the kidney, 25-fold in the heart, and twofold in the adrenals. The AT(2)R number amounted to 82-98% of total Ang II binding sites. In the ZG of TGRCXmAT(2)R, the AT(2)R density was elevated threefold relative to wild-type (WT) littermates, whereas AT(1)R density remained unchanged. TGRCXmAT(2)R rats were viable and exhibited normal reproduction, blood pressure, and kidney function. Notably, a slightly but significantly reduced body weight and a moderate increase in plasma urea were observed. With respect to adrenal function, 24-h urinary and plasma aldosterone concentrations were unaffected in TGRCXmAT(2)R at baseline. Three and 14 days of Ang II infusion (300 ng·min(-1)·kg(-1)) increased plasma aldosterone levels in WT and in TGR. These changes were completely abolished by the AT(1)R blocker losartan. Of note, glomerulosa cell proliferation, as indicated by the number of Ki-67-positive glomerulosa cells, was stimulated by Ang II in TGR and WT rats; however, this increase was significantly attenuated in TGR overexpressing the AT(2)R. In conclusion, AT(2)R in the adrenal ZG inhibits Ang II-induced cell proliferation but has no obvious lasting effect on the regulation of the aldosterone production at the investigated stages.


Assuntos
Aldosterona/fisiologia , Modelos Animais , Ratos Transgênicos , Receptor Tipo 2 de Angiotensina/metabolismo , Zona Glomerulosa/fisiologia , Angiotensina II/fisiologia , Animais , Proliferação de Células , Regulação da Expressão Gênica/fisiologia , Ratos , Regulação para Cima , Zona Glomerulosa/citologia
3.
Pathol Oncol Res ; 28: 1610268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35706996

RESUMO

Purpose: The overall benefit of surgical treatments for patients with glioma is undisputed. We have shown preclinically that brain tumor cells form a network that is capable of detecting damage to the tumor, and repair itself. The aim of this study was to determine whether a similar mechanism might contribute to local recurrence in the clinical setting. Methods: We evaluated tumor progression patterns of 24 initially non-contrast-enhancing gliomas that were partially resected or biopsied. We measured the distance between the new contrast enhancement developing over time, and prior surgical lesioning, and evaluated tumor network changes in response to sequential resections by quantifying tumor cells and tumor networks with specific stainings against IDH1-R132H. Results: We found that new contrast enhancement appeared within the residual, non-enhancing tumor mass in 21/24 patients (87.5%). The location of new contrast enhancement within the residual tumor region was non-random; it occurred adjacent to the wall of the resection cavity in 12/21 patients (57.1%). Interestingly, the density of the glioma cell network increased in all patient tumors between initial resection or biopsy and recurrence. In line with the histological and radiological malignization, Ki67 expression increased from initial to final resections in 14/17 cases. Conclusion: The non-random distribution of glioma malignization in patients and unidirectional increase of anatomical tumor networks after surgical procedures provides evidence that surgical lesions, in the presence of residual tumor cells, can stimulate local tumor progression and tumor cell network formation. This argues for the development of intraoperative treatments increasing the benefits from surgical resection by specifically disrupting the mechanisms of local recurrence, particularly tumor cell network functionality.


Assuntos
Neoplasias Encefálicas , Glioma , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Progressão da Doença , Glioma/metabolismo , Glioma/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasia Residual/patologia
4.
Am J Pathol ; 177(6): 3000-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21119215

RESUMO

The PKD/Mhm(cy/+) rat is a widely used animal model for the study of human autosomal dominant polycystic kidney disease, one of the most common genetic disorders, affecting one in 1000 individuals. We identified a new gene, Anks6, which is mutated (Anks6((p.R823W))) in PKD/Mhm(cy/+) rats. The evidence for a causal link between Anks6((p.R823W)) and cystogenesis is still lacking, and the function of Anks6 is presently unknown. This study presents a novel transgenic rat model that overexpresses the mutated 2.8-kb Anks6((p.R823W)) cDNA in the renal tubular epithelium. The transgenic Anks6((p.R823W)) acts in a dominant-negative fashion and causes a predictable polycystic phenotype that largely mimics the general characteristics of the PKD/Mhm(cy/+) rats. Cyst development is accompanied by enhanced c-myc expression and continuous proliferation, apoptosis, and de-differentiation of the renal tubular epithelium as well as by a lack of translational up-regulation of p21 during aging. Using Northern blot analysis and in situ hybridization studies, we identified the first 10 days of age as the period during which transgene expression precedes and initiates cystic growth. Thus, we not only provide the first in vivo evidence for a causal link between the novel Anks6((p.R823W)) gene mutation and polycystic kidney disease, but we also developed a new transgenic rat model that will serve as an important resource for further exploration of the still unknown function of Anks6.


Assuntos
Proteínas Nucleares/genética , Doenças Renais Policísticas/genética , Substituição de Aminoácidos/genética , Animais , Arginina/genética , Expressão Gênica/fisiologia , Predisposição Genética para Doença , Masculino , Proteínas Mutantes/genética , Doenças Renais Policísticas/patologia , Polimorfismo de Nucleotídeo Único/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Triptofano/genética , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA