Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Inorg Chem ; 63(1): 400-415, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38150742

RESUMO

Chelation of lanthanide and actinide cations within a suitable macrocyclic ligand often results in a rigid, kinetically inert, and thermodynamically stable complex. A benchmark for such cation-ligand suitability are cyclen-derived macrocyclic ligands, frequently used as large cation hosts for various applications. Herein, a comprehensive study of the 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane ligand (DOTAM) chelates of UIV and CeIII and their properties in aqueous solutions is presented. By employing multiple analysis techniques, including X-ray crystallography, UV-vis absorbance, 1H NMR, UPLC-MS, cyclic voltammetry, and differential pulse voltammetry, the study has revealed that the two aqueous complexes undergo a spontaneous, gradual, and stepwise hydrolysis of each of the coordinated amides toward carboxylates. The coordination of UIV in the studied reaction has been shown to significantly enhance the reaction rate, leading to an acceleration of up to 6 orders of magnitude compared to the natural process of simple aqueous amides at room temperature. An attempt to describe the unusual chelated metal cation amide-activation feature, based on the relatively lower rigidity of the complex structure, is presented. Additionally, the electrochemical properties of the complex series are discussed in detail, along with the limitations of the analytical methods employed.

2.
Chemistry ; 28(61): e202201868, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36102009

RESUMO

The coordination and redox chemistry of aqueous CeIV/III macrocyclic compounds were studied by using the ligands DOTA and DOTP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methylene phosphonic acid), respectively). The hydrolysis tendency of the tetravalent cation in the presence of DOTA is shown to result in the formation of a highly ordered, fluorite-like [CeIV 6 (O)4 (OH)4 (H2 O)8 (DOTAH)4 ] oxo-hydroxo structure both in solution and in the solid state. The lifetime of the analogous species formed in the presence of DOTP was found to be much shorter. Spectroscopic measurements of the latter suggest its similarity to the former. Its gradual decomposition in solution leads to the accumulation of the in-cage complexes [CeIV DOTP] and [CeIII DOTP(H2 O)], which were crystallographically characterized in this study. The redox energetics and spectroscopic characteristics for the transition between these two in-cage complexes in aqueous solutions were studied as well. Together with the crystallographic structures of the above-mentioned species, the in-cage [CeIV DOTA(H2 O)] complex structure is presented herein for the first time. An elaborative analysis of the X-ray crystallographic structural data obtained for the in-cage complexes studied herein and similar structures published previously suggests that hard-bonding cyclen-derived ligands are, counter-intuitively, better suited for encapsulating, and perhaps kinetically stabilize softer cations than harder ones with DOTP, marked as a possible adequate chelator for the study of the aqueous properties of LnII and AcIII cations.

3.
Chemistry ; 27(32): 8264-8267, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33822408

RESUMO

Two new aqueous UIV complexes were synthesized by the interaction between the tetravalent uranium cation and the (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetra(methylene phosphonic acid) (DOTP) macrocyclic ligand. Two distinct homonuclear complexes were identified; the first was characterized by X-ray crystallography as a unique "out-of-cage", [U(DOTPH6 )2 ] complex, in which the UIV cation is octa-coordinated to 4 phosphonic arms from each ligand in a square anti-prism geometry, with a C4 symmetry. The second is the "in-cage" [U(DOTPH4 )] complex, in which the tetravalent cation is located between the macrocycle O4 and N4 planes. With the help of UV-Vis absorption, 1 H/31 P NMR, ATR-IR, and MALDI-TOFMS analytical techniques, the chemical interchange between both species is presented. It is shown that the one-way transition is governed by the formation of a multiple number of soluble oligomeric species consisting of varied stoichiometric ratios of both characterized homonuclear complexes.

4.
J Phys Chem A ; 125(7): 1436-1446, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33566599

RESUMO

The redox chemistry of CeIIIDOTA in cage in carbonate solutions was studied using electrochemistry and radiolysis techniques (continuous radiolysis and pulse radiolysis). Spectroscopic measurements point out that the species present in the solutions at high bicarbonate concentrations are [CeIIIDOTA(CO3)]3- (or less plausible [CeIIIDOTA(HCO3)]2-) with the carbonate (bicarbonate) anion as the ninth ligand versus [CeIIIDOTA(H2O)]- present in the absence of bicarbonate. Electrochemical results show a relatively low increase in the thermodynamic stabilization of the redox couple CeIV/III in the presence of carbonate versus its aqueous analogue. [CeIVDOTA(CO3)]2- and [CeIVDOTA(H2O)], prepared electrochemically, decompose photolytically. However, kept in the dark, both are relatively long lived; [CeIVDOTA(H2O)], though, is orders of magnitude kinetically more stable (a considerably longer half-life). Thus, one concludes that the carbonate species have a different mechanism of decomposition depending also on the presence of dioxygen after its preparation (in deaerated/aerated solutions). The [CeIVDOTA(CO3)]2- species is produced radiolytically by oxidation of the trivalent species by CO3•- with a rate constant, measured using pulse radiolysis, of 3.3 × 105 M-1 s-1. This rate constant is at least 1 order of magnitude smaller than most of the rate constants so far reported for the reaction of CO3•- with transition metal/lanthanide (cerium)/actinide complexes. This result together with the bulkiness of the reactants might suggest an outer-sphere electron transfer rather than the inner-sphere one so far proposed. The lifetime of the tetravalent cerium species obtained radiolytically in the presence of carbonate is shorter than the electrochemical one, suggesting a different conformer involved.

5.
Chemistry ; 26(15): 3390-3403, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31943407

RESUMO

The 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) aqueous complex of UIV with H2 O, OH- , and F- as axial ligands was studied by using UV/Vis spectrophotometry, ESI-MS, NMR spectroscopy, X-ray crystallography, and electrochemistry. The UIV -DOTA complex with either water or fluoride as axial ligands was found to be inert to oxidation by molecular oxygen, whereas the complex with hydroxide as an axial ligand slowly hydrolyzed and was oxidized by dioxygen to a diuranate precipitate. The combined data set acquired shows that, although axial substitution of fluoride and hydroxide ligands instead of water does not seem to significantly change the aqueous DOTA complex structure, it has an important effect on the electronic configuration of the complex. The UIV /UIII redox couple was found to be quasi-reversible for the complex with both axially bonded H2 O and hydroxide, but irreversible for the complex with axially bonded fluoride. Intriguingly, binding of the axial fluoride renders the irreversible one-electron UV /UIV oxidation of the [UIV (DOTA)(H2 O)] complex quasi-reversible, which suggests the formation of the short-lived pentavalent form of the complex, an aqueous non-uranyl chelated UV cation.

6.
Chemistry ; 24(5): 1088-1096, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28921692

RESUMO

Recently it was reported that copper bicarbonate/carbonate complexes are good electro-catalysts for water oxidation. However, the results did not enable a decision whether the active oxidant is a CuIII or a CuIV complex. Kinetic analysis of pulse radiolysis measurements coupled with DFT calculations point out that CuIII (CO3 )n3-2n complexes are the active intermediates in the electrolysis of CuII (CO3 )n2-2n solution. The results enable the evaluation of E°[(CuIII/II (CO3 )n )aq ]≈1.42 V versus NHE at pH 8.4. This redox potential is in accord with the electrochemical report. As opposed to literature suggestions for water oxidation, the present results rule out single-electron transfer from CuIII (CO3 )n3-2n to yield hydroxyl radicals. Significant charge transfer from the coordinated carbonate to CuIII results in the formation of C2 O62- by means of a second-order reaction of CuIII (CO3 )n3-2n . The results point out that carbonate stabilizes transition-metal cations at high oxidation states, not only as a good sigma donor, but also as a non-innocent ligand.

7.
J Phys Chem A ; 122(15): 3747-3753, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29608853

RESUMO

Hydroxamic acids (RC(O)NHOH) form a class of compounds that display interesting chemical and biological properties The chemistry of RC(O)NHOH) is associated with one- and two-electron oxidations forming the respective nitroxide radical (RC(O)NHO•) and acyl nitroso (RC(O)N═O), respectively, which are relatively unstable species. In the present study, the kinetics and mechanism of the •NO2 reaction with nitroxide radicals derived from acetohydroxamic acid, suberohydroxamic acid, benzohydroxamic acid, and suberoylanilide hydroxamic acid have been studied in alkaline solutions. Ionizing radiation was used to generate about equal yields of these radicals, demonstrating that the oxidation of the transient nitroxide radical by •NO2 produces HNO and nitrite at about equal yields. The rate constant of •NO2 reaction with the nitroxide radical derived from acetohydroxamic acid has been determined to be (2.5 ± 0.5) × 109 M-1 s-1. This reaction forms a transient intermediate absorbing at 314 nm, which decays via a first-order reaction whose rate increases upon increasing the pH or the hydroxamic acid concentration. Transient intermediates absorbing around 314 nm are also formed during the oxidation of hydroxamic acids by H2O2 catalyzed by horseradish peroxidase. It is shown that HNO is formed during the decomposition of these intermediates, and therefore, they are assigned to acyl nitroso compounds. This study provides for the first time a direct spectrophotometric detection of acyl nitroso compounds in aqueous solutions allowing the study of their chemistry and reaction kinetics.

8.
J Phys Chem A ; 122(35): 7006-7013, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30111101

RESUMO

Acyl nitroso compounds or nitrosocarhonyls (RC(O)N═O) are reactive short-lived electrophiles, and their hydrolysis and reactions with nucleophiles produce HNO. Previously, direct detection of acyl nitroso species in nonaqueous media has been provided by time-resolved infrared spectroscopy demonstrating that its half-life is about 1 ms. In the present study hydroxamic acids (RC(O)NHOH) are oxidized electrochemically in buffered aqueous solutions (pH 5.9-10.2) yielding transient species characterized by their maximal absorption at 314-330 nm. These transient species decompose via a first-order reaction yielding mainly HNO and the respective carboxylic acid and therefore are ascribed to RC(O)N═O. The sufficiently long half-life of RC(O)N═O in aqueous solution allows for the first time the study of the kinetics of its reactions with various nucleophiles demonstrating that the nucleophilic reactivity follows the order thiolate > hydroxamate > amine. Metal chelates of CH3C(O)NHOH catalyze the hydrolysis of CH3C(O)N═O at the efficacy order of CuII > ZnII > NiII > CoII where only CuII catalyzes the hydrolysis also in the absence of the hydroxamate. Finally, oxidation of hydroxamic acids generates HNO, and the rate of this process is determined by the half-life of the respective acyl nitroso compound.

9.
Biochim Biophys Acta Gen Subj ; 1861(8): 2060-2069, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28365302

RESUMO

BACKGROUND: Horseradish peroxidase (HRP) catalyzes H2O2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H2O2-induced inactivation, have been investigated. METHODS: HRP reaction with H2O2 was studied by following H2O2 depletion, O2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. RESULTS: Nitroxide protects HRP against H2O2-induced inactivation. The rate of H2O2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H2O2. The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO)>4-OH-TPO>3-carbamoyl proxyl>4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. CONCLUSIONS: Nitroxide catalytically protects HRP against inactivation induced by H2O2 while modulating its catalase-like activity. The protective role of nitroxide at µM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. GENERAL SIGNIFICANCE: Nitroxides catalytically protect heme proteins against inactivation induced by H2O2 revealing an additional role played by nitroxide antioxidants in vivo.


Assuntos
Antioxidantes/farmacologia , Catalase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/farmacologia , Óxidos de Nitrogênio/farmacologia , Catálise , Substâncias Protetoras/farmacologia
10.
J Phys Chem A ; 117(51): 13996-8, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24313550

RESUMO

The H/D kinetic isotope effect (KIE) for the reaction of methyl radicals with glycine in aqueous solutions at pH 10.6 equals 16 ± 3. This result proves that the methyl radical abstracts a hydrogen atom from the methylene group of glycine and not an electron from the unpaired couple on the nitrogen atom. The rate constant of the reaction of methyl radicals with glycine at pH 7.0 is orders of magnitude smaller than that at pH 10.6.


Assuntos
Elétrons , Glicina/química , Metano/análogos & derivados , Prótons , Água/química , Medição da Troca de Deutério , Concentração de Íons de Hidrogênio , Cinética , Metano/química
11.
J Inorg Biochem ; 234: 111883, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717883

RESUMO

The CuI/IIATP react with methyl radicals to form methane and methanol, where CuIATP reacts with •CH3 in a process that is surprisingly slow. The low-rate constant of this process is attributed to the significant rearrangement of the chelating ligand required for the transient's formation. These results were corroborated by DFT calculations of the relevant compounds.


Assuntos
Cobre , Metano , Trifosfato de Adenosina , Metano/análogos & derivados , Metanol
12.
Free Radic Biol Med ; 180: 134-142, 2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-34973364

RESUMO

The mechanism of reaction of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) with ·CH3, CH3O2· and ·OH radicals were studied. The radicals were formed in situ radiolytically. The methyl radicals react orders of magnitude slower with DOTA and with MIII(DOTA)- than the hydroxyl radicals. The various final products were identified and mechanisms for their formation are proposed. CH3O2· radicals do not react, or react too slowly to be observed, with DOTA and with MIII(DOTA)- as long as the central cation is not oxidized by the peroxyl radical. The results imply that synthesis of the MIII(DOTA)-(MIII = radioisotope) complexes in a water-organic solvent (ethanol or 2-propanol or acetonitrile) mixture is not only kinetically desired but the so formed complex also decreases the radiolytic decomposition of DOTA.


Assuntos
Quelantes , Radical Hidroxila , Diagnóstico por Imagem , Radicais Livres , Compostos Heterocíclicos com 1 Anel , Peróxidos
13.
Chemistry ; 17(18): 5188-92, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21465586

RESUMO

An electron exchange column (analogous to ion exchange columns) was developed using the unique redox properties of the nickel-tetraazamacrocyclic complexes (nickel cyclam [Ni(II)L(1)](2+)) and nickel-trans-III-meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, ([Ni(II)L(2)](2+)), and the physical and chemical stability of the ceramic materials using the sol-gel process to entrap the complexes. The entrapment by the biphasic sol-gel method is based on non-covalent bonds between the matrix and the complex; therefore the main problem was leaching. Parameters controlling the leaching were investigated. Redox cycles with the reducing agent ascorbic acid, and persulfate as the oxidizing agent were performed.


Assuntos
Elétrons , Compostos Heterocíclicos/química , Níquel/química , Compostos Organometálicos/química , Ácido Ascórbico/química , Cromatografia por Troca Iônica , Cristalografia por Raios X , Géis , Modelos Moleculares , Estrutura Molecular , Oxirredução , Sulfatos/química
14.
Biochim Biophys Acta Gen Subj ; 1863(11): 129403, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31356821

RESUMO

BACKGROUND: Nitroxide antioxidants (RNO•) protect from injuries associated with oxidative stress. Tyrosine residues in proteins are major targets for oxidizing species giving rise to irreversible cross-linking and protein nitration, but the mechanisms underlying the protective activity of RNO• on these processes are not sufficiently clear. METHODS: Tyrosine oxidation by the oxoammonium cation (RN+=O) was studied by following the kinetics of RNO• formation using EPR spectroscopy. Tyrosine oxidation and nitration were investigated using the peroxidase/H2O2 system without and with nitrite. The inhibitory effect of RNO• on these processes was studied by following the kinetics of the evolved O2 and accumulation of tyrosine oxidation and nitration products. RESULTS: Tyrosine ion is readily oxidized by RN+=O, and the equilibrium constant of this reaction depends on RNO• structure and reduction potential. RNO• catalytically inhibits tyrosine oxidation and nitration since it scavenges both tyrosyl and •NO2 radicals while recycling through RN+=O reduction by H2O2, tyrosine and nitrite. The inhibitory effect of nitroxide on tyrosine oxidation and nitration increases as its reduction potential decreases where the 6-membered ring nitroxides are better catalysts than the 5-membered ones. CONCLUSIONS: Nitroxides catalytically inhibit tyrosine oxidation and nitration. The proposed reaction mechanism adequately fits the results explaining the dependence of the nitroxide inhibitory effect on its reduction potential and on the concentrations of the reducing species present in the system. GENERAL SIGNIFICANCE: Nitroxides protect against both oxidative and nitrative damage. The proposed reaction mechanism further emphasizes the role of the reducing environment to the efficacy of these catalysts.


Assuntos
Peróxido de Hidrogênio/química , Modelos Químicos , Óxidos de Nitrogênio/química , Tirosina/química , Catálise , Cinética , Nitritos/química , Oxirredução
15.
Free Radic Biol Med ; 108: 832-839, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28495446

RESUMO

The peroxidative activity of horseradish peroxidase (HRP) undergoes progressive inactivation while catalyzing the oxidation of nitrite by H2O2. The extent of inactivation increases as the pH increases, [nitrite] decreases or [H2O2] increases, and is accompanied by a loss of the Soret peak of HRP along with yellow-greenish coloration of the solution. HRP-catalyzed nitrite oxidation by H2O2 involves not only the formation of compounds I and II as transient heme species, but also compound III, all of which in turn, oxidize nitrite yielding •NO2. The rate constant of nitrite oxidation by compound III is at least 10-fold higher than that by compound II, which is also reducible by •NO2 where its reduction by nitrite is the rate-determining step of the catalytic cycle. The extent of the loss of the Soret peak of HRP is lower than the loss of its peroxidative activity implying that deterioration of the heme moiety leading to iron release only partially contributes toward heme inactivation. Cyclic stable nitroxide radicals, such as 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO), 4-OH-TPO and 4-NH2-TPO at µM concentrations detoxify •NO2 thus protecting HRP against inactivation mediated by this radical. Hence, HRP inactivation proceeds via nitration of the porphyrin ring most probably through compound I reaction with •NO2, which partially leads to deterioration of the heme moiety. The nitroxide acts catalytically since its oxidation by •NO2 yields the respective oxoammonium cation, which is readily reduced back to the nitroxide by H2O2, superoxide ion radical, and nitrite. In addition, the nitroxide catalytically inhibits tyrosine nitration mediated by HRP/H2O2/nitrite reactions system as it efficiently competes with tyrosyl radical for •NO2. The inhibition by nitroxides of tyrosine nitration is demonstrated also in the case of microperoxidase (MP-11) and cytochrome c revealing an additional role played by nitroxide antioxidants.


Assuntos
Citocromos/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Animais , Armoracia/enzimologia , Catalase/metabolismo , Bovinos , Citocromos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ativação Enzimática , Heme/metabolismo , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Óxido Nítrico/química , Oxirredução , Oximetria , Piperidinas/química , Porfirinas/química , Superóxidos/metabolismo
16.
Free Radic Biol Med ; 101: 491-499, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27826125

RESUMO

Stable nitroxide radicals have multiple biological effects, although the mechanisms underlying them are not fully understood. Their protective effect against oxidative damage has been mainly attributed to scavenging deleterious radicals, oxidizing reduced metal ions and reducing oxyferryl centers of heme proteins. Yet, the potential of nitroxides to protect heme proteins against inactivation while suppressing or enhancing their catalytic activities has been largely overlooked. We have studied the effect of nitroxides, including TPO (2,2,6,6-tetramethylpiperidin-N-oxyl), 4-OH-TPO, 4-oxo-TPO and 3-carbamoyl proxyl, on the peroxidase-like activity of metmyoglobin (MbFeIII) and methemoglobin (HbFeIII) using nitrite as an electron donor by following heme absorption, H2O2 consumption, O2 evolution and nitrite oxidation. The results demonstrate that the peroxidase-like activity is accompanied by a progressive heme inactivation where MbFeIII is far more resistant than HbFeIII. Nitroxides convert the peroxidase-like activity into catalase-like activity while inhibiting heme inactivation and nitrite oxidation in a dose-dependent manner. The nitroxide facilitates H2O2 dismutation, yet none of its reactions with any of the intermediates formed in these systems is rate-determining, and therefore its effect on the rate of the catalysis is hardly dependent on the kind of the nitroxide derivative and its concentration. The nitroxide at µM concentrations range catalytically inhibits nitrite oxidation, and consequently prevents tyrosine nitration induced by heme protein/H2O2/nitrite due to its fast oxidation by •NO2 forming the respective oxoammonium cation, which is reduced back to the nitroxide by H2O2 and by superoxide radical. The nitroxides are superior over common antioxidants, which their reaction with •NO2 always yields secondary radicals leading eventually to consumption of the antioxidant. A mechanism is proposed, and the kinetic simulations fit very well the experimental data in the case of MbFeIII where most of the rate constants of the reactions involved are independently known.


Assuntos
Óxidos N-Cíclicos/química , Elétrons , Heme/química , Metemoglobina/química , Metamioglobina/química , Pirrolidinas/química , Animais , Biocatálise , Catalase/química , Eritrócitos/química , Cavalos , Humanos , Peróxido de Hidrogênio/química , Cinética , Metemoglobina/isolamento & purificação , Metamioglobina/isolamento & purificação , Miocárdio/química , Nitritos/química , Oxirredução , Peroxidase/química , Soluções/química
18.
Dalton Trans ; 43(1): 103-10, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24091856

RESUMO

Ni(II)L(2), L(2) = 1-propyl-1,3,5,8,12-pentaazacyclotetradecane, was covalently bound to a silica support. This complex can be reversibly oxidized to the corresponding Ni(III) complex. The latter complex is relatively long lived. Therefore electron exchange columns based on this material can be prepared.


Assuntos
Compostos Macrocíclicos/química , Níquel/química , Dióxido de Silício/química , Sítios de Ligação , Elétrons , Compostos Heterocíclicos com 1 Anel/química , Ligantes , Oxirredução
19.
Int J Radiat Biol ; 90(6): 480-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24605770

RESUMO

PURPOSE: The efficacy of a boron-containing cholesteryl ester compound (BCH) as a boron neutron capture therapy (BNCT) agent for the targeted irradiation of PC-3 human prostate cancer cells was examined. MATERIALS AND METHODS: Liposome-based delivery of BCH was quantified with inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). Cytotoxicity of the BCH-containing liposomes was evaluated with neutral red, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), and lactate dehydrogenase assays. Colony formation assays were utilized to evaluate the decrease in cell survival due to high-linear energy transfer (LET) particles resulting from (10)B thermal neutron capture. RESULTS: BCH delivery by means of encapsulation in a lipid bilayer resulted in a boron uptake of 35.2 ± 4.3 µg/10(9) cells, with minimal cytotoxic effects. PC-3 cells treated with BCH and exposed to a 9.4 × 10(11) n/cm(2) thermal neutron fluence yielded a 20-25% decrease in clonogenic capacity. The decreased survival is attributed to the generation of high-LET α particles and (7)Li nuclei that deposit energy in densely ionizing radiation tracks. CONCLUSION: Liposome-based delivery of BCH is capable of introducing sufficient boron to PC-3 cells for BNCT. High-LET α particles and (7)Li nuclei generated from (10)B thermal neutron capture significantly decrease colony formation ability in the targeted PC-3 cells.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Neoplasias da Próstata/radioterapia , Boro/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Ésteres do Colesterol/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Isótopos/administração & dosagem , Transferência Linear de Energia , Lipossomos , Masculino , Neoplasias da Próstata/patologia
20.
Dalton Trans ; 42(48): 16666-8, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24077021

RESUMO

Surprisingly the oxidation of MoO4(3-) by H2O2 involves two H2O2 molecules. It is proposed that generally when the reaction of a reducing agent with H2O2, to form a single electron oxidized product and a hydroxyl radical, is endothermic the reaction involves more than one H2O2 molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA