Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1840(7): 2192-202, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24735797

RESUMO

BACKGROUND: Noise exposure impairs outer hair cells (OHCs). The common basis for OHC dysfunction and loss by acoustic over-stimulation is represented by reactive oxygen species (ROS) overload that may affect the membrane structural organization through generation of lipid peroxidation. METHODS: Here we investigated in OHC different functional zones the mechanisms linking metabolic functional state (NAD(P)H intracellular distribution) to the generation of lipid peroxides and to the physical state of membranes by two photon fluorescence microscopy. RESULTS: In OHCs of control animals, a more oxidized NAD(P)H redox state is associated to a less fluid plasma membrane structure. Acoustic trauma induces a topologically differentiated NAD(P)H oxidation in OHC rows, which is damped between 1 and 6h. Peroxidation occurs after ~4h from noise insult, while ROS are produced in the first 0.2h and damage cells for a period of time after noise exposure has ended (~7.5h) when a decrease of fluidity of OHC plasma membrane occurs. OHCs belonging to inner rows, characterized by a lower metabolic activity with respect to other rows, show less severe metabolic impairment. CONCLUSIONS: Our data indicate that plasma membrane fluidity is related to NAD(P)H redox state and lipid peroxidation in hair cells. GENERAL SIGNIFICANCE: Our results could pave the way for therapeutic intervention targeting the onset of redox umbalance.


Assuntos
Membrana Celular/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Fluidez de Membrana , Ruído/efeitos adversos , Animais , Orelha Externa/metabolismo , Orelha Externa/patologia , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/fisiopatologia , Peroxidação de Lipídeos , NADP/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Appl Microbiol Biotechnol ; 99(13): 5593-603, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25683665

RESUMO

Staphylococcus epidermidis is the leading etiologic agent of device-related infections. S. epidermidis is able to bind, by means of the adhesins of its cell wall, the host matrix proteins filming the artificial surfaces. Thence, bacteria cling to biomaterials and infection develops. The effect of temperature on integrity, structure, and biological activity of the collagen-binding adhesin (SdrF) of S. epidermidis has been here investigated. By cloning in E. coli XL1-Blue, a recombinant of the SdrF binding domain B (rSdrFB), carrying an N-terminal polyhistidine, was obtained. Purification was by HiTrap(TM) Chelating HP columns. Assessment of purity, molecular weight, and integrity was by SDS-PAGE. The rSdrFB-collagen binding was investigated by ELISA. A full three-dimensional reconstruction of rSdrFB was achieved by small-angle X-ray scattering (SAXS). At 25 °C, rSdrFB bound to type I collagen in a dose-dependent, saturable manner, with a Kd of 2.48 × 10(-7) M. When temperature increased from 25 to 37 °C, a strong conformational change occurred, together with the abolition of the rSdrFB-collagen binding. The rSdrFB integrity was not affected by temperature variation. SdrFB-collagen binding is switched on/off depending on the temperature. Implications with the infection pathogenesis are enlightened.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Colágeno/metabolismo , Conformação Proteica/efeitos da radiação , Staphylococcus epidermidis/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Peso Molecular , Ligação Proteica/efeitos da radiação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Staphylococcus epidermidis/genética , Temperatura
3.
Microsc Microanal ; 20(4): 1198-207, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913522

RESUMO

Cell motility involves a number of strategies that cells use in order to seek nutrients, escape danger, and fulfill morphogenetic roles. Here we present a methodology to quantify morphological changes and their relationship with signaling events from time-lapse imaging microscopy experiments, in order to characterize physiological and pathological processes. To this aim, the stationary spatial pattern of signaling events is determined through an intracellular fluorescent probe, and it is related with the frequency and entity of morphodynamic events, which are in turn quantified through a stochastic approach: two pseudoimages are obtained from a time series of moving cells that describe the probability that a pixel belongs to the cell, and the probability that a pixel is subject to a dynamic event. The simultaneous construction of these maps permits visualization of hot spots of dynamic events, i.e., zones of formation of membrane protrusions and retractions and their relationship with the signaling events reported by the specific probe employed. The method is tested on spontaneous movement of cells, trasfected with redox-sensitive yellow fluorescent protein, in which the distribution of the hot spots and its change upon expression of constitutively active Rac (V12-Rac), is related to the distribution of oxidized spots.


Assuntos
Ensaios de Migração Celular/métodos , Movimento Celular , Microscopia de Fluorescência/métodos , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Camundongos , Coloração e Rotulagem , Imagem com Lapso de Tempo
4.
Antimicrob Agents Chemother ; 57(3): 1275-82, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23263007

RESUMO

Aspergillus fumigatus biofilms represent a problematic clinical entity, especially because of their recalcitrance to antifungal drugs, which poses a number of therapeutic implications for invasive aspergillosis, the most difficult-to-treat Aspergillus-related disease. While the antibiofilm activities of amphotericin B (AMB) deoxycholate and its lipid formulations (e.g., liposomal AMB [LAMB]) are well documented, the effectiveness of these drugs in combination with nonantifungal agents is poorly understood. In the present study, in vitro interactions between polyene antifungals (AMB and LAMB) and alginate lyase (AlgL), an enzyme degrading the polysaccharides produced as extracellular polymeric substances (EPSs) within the biofilm matrix, against A. fumigatus biofilms were evaluated by using the checkerboard microdilution and the time-kill assays. Furthermore, atomic force microscopy (AFM) was used to image and quantify the effects of AlgL-antifungal combinations on biofilm-growing hyphal cells. On the basis of fractional inhibitory concentration index values, synergy was found between both AMB formulations and AlgL, and this finding was also confirmed by the time-kill test. Finally, AFM analysis showed that when A. fumigatus biofilms were treated with AlgL or polyene alone, as well as with their combination, both a reduction of hyphal thicknesses and an increase of adhesive forces were observed compared to the findings for untreated controls, probably owing to the different action by the enzyme or the antifungal compounds. Interestingly, marked physical changes were noticed in A. fumigatus biofilms exposed to the AlgL-antifungal combinations compared with the physical characteristics detected after exposure to the antifungals alone, indicating that AlgL may enhance the antibiofilm activity of both AMB and LAMB, perhaps by disrupting the hypha-embedding EPSs and thus facilitating the drugs to reach biofilm cells. Taken together, our results suggest that a combination of AlgL and a polyene antifungal may prove to be a new therapeutic strategy for invasive aspergillosis, while reinforcing the EPS as a valuable antibiofilm drug target.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Ácido Desoxicólico/farmacologia , Hifas/efeitos dos fármacos , Polissacarídeo-Liases/farmacologia , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/ultraestrutura , Biofilmes/crescimento & desenvolvimento , Combinação de Medicamentos , Sinergismo Farmacológico , Polissacarídeos Fúngicos/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica
5.
PLoS One ; 7(12): e50804, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251387

RESUMO

Interactions occurring between malignant cells and the stromal microenvironment heavily influence tumor progression. We investigated whether this cross-talk affects some molecular and functional aspects specifically correlated with the invasive phenotype of breast tumor cells (i.e. adhesion molecule expression, membrane fluidity, migration) by co-culturing mammary cancer cells exhibiting different degrees of metastatic potential (MDA-MB-231>MCF-7) with fibroblasts isolated from breast healthy skin (normal fibroblasts, NFs) or from breast tumor stroma (cancer-associated fibroblasts, CAFs) in 2D or 3D (nodules) cultures. Confocal immunofluorescence analysis of the epithelial adhesion molecule E-cadherin on frozen nodule sections demonstrated that NFs and CAFs, respectively, induced or inhibited its expression in MCF-7 cells. An increase in the mesenchymal adhesion protein N-cadherin was observed in CAFs, but not in NFs, as a result of the interaction with both kinds of cancer cells. CAFs, in turn, promoted N-cadherin up-regulation in MDA-MB-231 cells and its de novo expression in MCF-7 cells. Beyond promotion of "cadherin switching", another sign of the CAF-triggered epithelial-mesenchymal transition (EMT) was the induction of vimentin expression in MCF-7 cells. Plasma membrane labeling of monolayer cultures with the fluorescent probe Laurdan showed an enhancement of the membrane fluidity in cancer cells co-cultured with NFs or CAFs. An increase in lipid packing density of fibroblast membranes was promoted by MCF-7 cells. Time-lapsed cell tracking analysis of mammary cancer cells co-cultured with NFs or CAFs revealed an enhancement of tumor cell migration velocity, even with a marked increase in the directness induced by CAFs.Our results demonstrate a reciprocal influence of mammary cancer and fibroblasts on various adhesiveness/invasiveness features. Notably, CAFs' ability to promote EMT, reduction of cell adhesion, increase in membrane fluidity, and migration velocity and directness in mammary cancer cells can be viewed as an overall progression- and invasion-promoting effect.


Assuntos
Neoplasias da Mama/metabolismo , Adesão Celular/fisiologia , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Células Estromais/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células Estromais/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA