Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 343: 118222, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235991

RESUMO

Biochar, a promising carbon-rich and carbon-negative material, can control water pollution, harness the synergy of sustainable development goals, and achieve circular economy. This study examined the performance feasibility of treating fluoride-contaminated surface and groundwater using raw and modified biochar synthesized from agricultural waste rice husk as problem-fixing renewable carbon-neutral material. Physicochemical characterizations of raw/modified biochars were investigated using FESEM-EDAX, FTIR, XRD, BET, CHSN, VSM, pHpzc, Zeta potential, and particle size analysis were analyzed to identify the surface morphology, functional groups, structural, and electrokinetic behavior. In fluoride (F-) cycling, performance feasibility was tested at various governing factors, contact time (0-120 min), initial F- levels (10-50 mg L-1), biochar dose (0.1-0.5 g L-1), pH (2-9), salt strengths (0-50 mM), temperatures (301-328 K), and various co-occurring ions. Results revealed that activated magnetic biochar (AMB) possessed higher adsorption capacity than raw biochar (RB) and activated biochar (AB) at pH 7. The results indicated that maximum F- removal (98.13%) was achieved using AMB at pH 7 for 10 mg L-1. Electrostatic attraction, ion exchange, pore fillings, and surface complexation govern F- removal mechanisms. Pseudo-second-order and Freundlich were the best fit kinetic and isotherm for F- sorption, respectively. Increased biochar dose drives an increase in active sites due to F- level gradient and mass transfer between biochar-fluoride interactions, which reported maximum mass transfer for AMB than RB and AB. Fluoride adsorption using AMB could be described through chemisorption processes at room temperature (301 K), though endothermic sorption follows the physisorption process. Fluoride removal efficiency reduced, from 67.70% to 53.23%, with increased salt concentrations from 0 to 50 mM NaCl solutions, respectively, due to increased hydrodynamic diameter. Biochar was used to treat natural fluoride-contaminated surface and groundwater in real-world problem-solving measures, showed removal efficiency of 91.20% and 95.61%, respectively, for 10 mg L-1 F- contamination, and has been performed multiple times after systematic adsorption-desorption experiments. Lastly, techno-economic analysis was analyzed for biochar synthesis and F- treatment performance costs. Overall, our results revealed worth output and concluded with recommendations for future research on F- adsorption using biochar.


Assuntos
Água Subterrânea , Oryza , Poluentes Químicos da Água , Purificação da Água , Fluoretos , Oryza/química , Purificação da Água/métodos , Carvão Vegetal/química , Adsorção , Água Subterrânea/química , Cinética , Concentração de Íons de Hidrogênio
2.
Environ Res ; 214(Pt 4): 114043, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029838

RESUMO

Fluoride (F-) is one of the essential elements found in soil and water released from geogenic sources and several anthropogenic activities. Fluoride causes fluorosis, dental and skeletal growth problems, teeth mottling, and neurological damage due to prolonged consumption, affecting millions worldwide. Adsorption is an extensively implemented technique in water and wastewater treatment for fluoride, with significant potential due to efficiency, cost-effectiveness, ease of operation, and reusability. This review highlights the current state of knowledge for fluoride adsorption using biochar-based materials and the limitations of biochar for fluoride-contaminated groundwater and industrial wastewater treatment. Biochar materials have shown significant adsorption capacities for fluoride under the influence of low pH, biochar dose, initial concentration, temperature, and co-existing ions. Modified biochar possesses various functional groups (-OH, -CC, -C-O, -CONH, -C-OH, X-OH), in which enhanced hydroxyl (-OH) groups onto the surface plays a significant role in fluoride adsorption via electrostatic attraction and ion exchange. Regeneration and reusability of biochar sorbents need to be performed to a greater extent to improve removal efficiency and reusability in field conditions. Furthermore, the present investigation identifies the limitations of biochar materials in treating fluoride-contaminated drinking groundwater and industrial effluents. The fluoride removal using biochar-based materials at an industrial scale for understanding the practical feasibility is yet to be documented. This review work recommend the feasibility of biochar-based materials in column studies for fluoride remediation in the future.


Assuntos
Fluoretos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Estudos de Viabilidade , Cinética , Água , Poluentes Químicos da Água/análise
3.
Ecotoxicol Environ Saf ; 100: 61-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24433792

RESUMO

Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Alga Marinha/química , Poluentes Químicos da Água/análise , Índia , Água do Mar/química
4.
Int J Mol Sci ; 15(9): 16772-86, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25247576

RESUMO

Microbial fuel cells (MFCs) represent a novel platform for treating wastewater and at the same time generating electricity. Using Pseudomonas putida (BCRC 1059), a wild-type bacterium, we demonstrated that the refinery wastewater could be treated and also generate electric current in an air-cathode chamber over four-batch cycles for 63 cumulative days. Our study indicated that the oil refinery wastewater containing 2213 mg/L (ppm) chemical oxygen demand (COD) could be used as a substrate for electricity generation in the reactor of the MFC. A maximum voltage of 355 mV was obtained with the highest power density of 0.005 mW/cm² in the third cycle with a maximum current density of 0.015 mA/cm² in regard to the external resistor of 1000 Ω. A maximum coulombic efficiency of 6 × 10⁻²% was obtained in the fourth cycle. The removal efficiency of the COD reached 30% as a function of time. Electron transfer mechanism was studied using cyclic voltammetry, which indicated the presence of a soluble electron shuttle in the reactor. Our study demonstrated that oil refinery wastewater could be used as a substrate for electricity generation.


Assuntos
Fontes de Energia Bioelétrica , Indústria Química/métodos , Poluição por Petróleo/prevenção & controle , Pseudomonas putida/fisiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Purificação da Água/métodos , Fontes de Energia Bioelétrica/microbiologia , Análise da Demanda Biológica de Oxigênio , Eletricidade , Eletrodos , Desenho de Equipamento , Poluentes Químicos da Água
5.
Ecol Evol ; 14(4): e11268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646006

RESUMO

The cryptic invasion of golden apple snails (Pomacea canaliculata and P. maculata) in Taiwan has caused significant ecological and economical damage over the last few decades, however, their management remains difficult due to inadequate taxonomic identification, complex phylogeny, and limited population genetic information. We aim to understand the current distribution, putative population of origin, genetic diversity, and potential path of cryptic invasion of Pomacea canaliculata and P. maculata across Taiwan to aid in improved mitigation approaches. The present investigation conducted a nationwide survey with 254 samples collected from 41 locations in 14 counties or cities across Taiwan. We identified P. canaliculata and P. maculata based on mitochondrial COI and compared their genetic diversity across Taiwan, as well as other introduced and native countries (based on publicly available COI data) to understand the possible paths of invasion to Taiwan. Based on mitochondrial COI barcoding, sympatric and heterogeneous distributions of invasive P. canaliculata and P. maculata were noted. Our haplotype analysis and mismatch distribution results suggested multiple introductions of P. canaliculata in Taiwan was likely originated directly from Argentina, whereas P. maculata was probably introduced from a single, or a few, introduction event(s) from Argentina and Brazil. Our population genetic data further demonstrated a higher haplotype and genetic diversity for P. canaliculata and P. maculata in Taiwan compared to other introduced regions. Based on our current understanding, the establishment of P. canaliculata and P. maculata is alarming and widespread beyond geopolitical borders, requiring a concerted and expedited national and international invasive species mitigation program.

6.
J Environ Sci (China) ; 25(6): 1180-5, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24191608

RESUMO

The use of a biodegradable natural plant-based surfactant extracted from soapberry is proposed for the remediation of Ni, Cr and Mn from industrial soil site in Hai-Pu, Taiwan. Batch experiments were performed under variation of fundamental factors (saponin concentration, pH, and incubation time) for metal remediation. Removal of Ni and Mn were increased with increasing saponin concentration (0.015-0.150 g/L), whereas the removal of Cr was increased upto 0.075 g/L saponin. The Ni, Cr and Mn were removed significantly (p < or = 0.05) at near to the neutral and slightly acidic (pH 5 to 8) conditions. Removal efficiency of Ni (99%) from the soil was found to be greater than that of Cr (73%) or Mn (25%) in the presence of saponin at a concentration of 0.150 g/L at pH 5. The removal percentage increased with incubation time where the removal of Ni was faster than that of Cr and Mn. The result indicates the feasibility of eco-friendly removal of heavy metal (Ni, Cr and Mn) from industrial soil by soil washing process in presence of plant derived saponin.


Assuntos
Metais Pesados/química , Sapindus/química , Saponinas/química , Poluentes do Solo/química , Concentração de Íons de Hidrogênio , Taiwan
7.
Environ Pollut ; 334: 122171, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437759

RESUMO

In light of the current COVID-19 pandemic caused by the virus SARS-CoV-2, there is an urgent need to identify and investigate the various pathways of transmission. In addition to contact and aerosol transmission of the virus, this review investigated the possibility of its transmission via microplastics found in sewage. Wastewater-based epidemiological studies on the virus have confirmed its presence and persistence in both influent sewage as well as treated ones. The hypothesis behind the study is that the huge amount of microplastics, especially Polyvinyl Chloride and Polyethylene particles released into the open waters from sewage can become a good substrate and vector for microbes, especially Polyvinyl Chloride and Polyethylene particles, imparting stability to microbes and aiding the "plastisphere" formation. A bibliometric analysis highlights the negligence of research toward plastispheres and their presence in sewage. The ubiquity of microplastics and their release along with the virus into the open waters increases the risk of viral plastispheres. These plastispheres may be ingested by aquatic organisms facilitating reverse zoonosis and the commercial organisms already reported with accumulating microplastics through the food chain poses a risk to human populations as well. Reliance of high population density areas on open waters served by untreated sewage in economically less developed countries might bring back viral transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Esgotos , Microplásticos , Águas Residuárias , Plásticos , Pandemias , Cloreto de Polivinila , Polietileno
8.
J Microbiol Methods ; 212: 106809, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597775

RESUMO

The emergence of multi-drug resistant (MDR) pathogens poses a significant global health concern due to the failure of conventional medical treatment. As a result, the development of several metallic (Ag, Au, Zn, Ti, etc.) nanoparticles, has gained prominence as an alternative to conventional antimicrobial therapies. Among these, green-synthesized silver nanoparticles (AgNPs) have gained significant attention due to their notable efficiency and broad spectrum of antimicrobial activity. Bacterial exopolysaccharides (EPS) have recently emerged as a promising biological substrate for the green synthesis of AgNPs. EPS possess polyanionic functional groups (hydroxyl, carboxylic, sulfate, and phosphate) that effectively reduce and stabilize AgNPs. EPS-mediated AgNPs exhibit a wide range of antimicrobial activity against various pathogenic microbes, including Gram-positive and Gram-negative bacteria, as well as fungi. The extraction and purification of bacterial EPS play a vital role in obtaining high-quality and -quantity EPS for industrial applications. This study focuses on the comprehensive methodology of EPS extraction and purification, encompassing screening, fermentation optimization, pretreatment, protein elimination, precipitation, and purification. The review specifically highlights the utilization of bacterial EPS-mediated AgNPs, covering EPS extraction, the synthesis mechanism of green EPS-mediated AgNPs, their characterization, and their potential applications as antimicrobial agents against pathogens. These EPS-mediated AgNPs offer numerous advantages, including biocompatibility, biodegradability, non-toxicity, and eco-friendliness, making them a promising alternative to traditional antimicrobials and opening new avenues in nanotechnology-based approaches to combat microbial infections.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Bactérias Gram-Negativas , Prata/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia
9.
Aquat Toxicol ; 264: 106713, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866164

RESUMO

With the growing age of human civilization, industrialization has paced up equally which is followed by the innovation of newer concepts of science and technology. One such example is the invention of engineered nanoparticles and their flagrant use in widespread applications. While ENPs serve their intended purposes, they also disrupt the ecological balance by contaminating pristine aquatic ecosystems. This review encompasses a comprehensive discussion about the potent toxicity of ENPs on aquatic ecosystems, with a particular focus on their impact on aquatic higher plants. The discussion extends to elucidating the fate of ENPs upon release into aquatic environments, covering aspects ranging from morphological and physiological effects to molecular-level phytotoxicity. Furthermore, this level of toxicity has been correlated with the determination of competent plants for the phytoremediation process towards the mitigation of this ecological stress. However, this review further illustrates the path of future research which is yet to be explored. Determination of the genotoxicity level of aquatic higher plants could explain the entire process comprehensively. Moreover, to make it suitable to be used in natural ecosystems phytoremediation potential of co-existing plant species along with the presence of different ENPs need to be evaluated. This literature will undoubtedly offer readers a comprehensive understanding of the stress induced by the irresponsible release of engineered nanoparticles (ENP) into aquatic environments, along with insights into the resilience characteristics of these pristine ecosystems.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Biodegradação Ambiental , Ecossistema , Poluentes Químicos da Água/toxicidade , Plantas
10.
Environ Geochem Health ; 34(5): 563-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22580621

RESUMO

Drinking of arsenic (As)-contaminated groundwater has adverse effects on health of millions of people worldwide. This study aimed to determine the degree of severity of As exposure from drinking water in peri-urban Moyna and Ardebok villages, West Bengal, India. Arsenic concentrations in hair, nail and urine samp les of the individuals were determined. Arsenical dermatosis, keratosis and melanosis were investigated through medical evaluation. We have evaluated the association between As exposure from drinking water, and keratosis and melanosis outcomes. The results showed that 82.7 % of the sampled tube wells contain As concentrations above 10 µg/L, while 57.7 % contain As concentrations above 50 µg/L. The hair, nail and urine As concentrations were positively correlated with As concentrations in drinking water. In our study population, we observed a strong association between As concentrations ranging 51-99 µg/L and keratosis and melanosis outcomes, although the probability decreases at higher concentration ranges perhaps due to switching away from the use of As-contaminated tube wells for drinking and cooking purposes. High As concentrations in hair, nail and urine were observed to be associated with the age of the study population. The level of As concentrations in hair, nail and urine samples of the study population indicated the degree of severity of As exposure in the study region.


Assuntos
Arsênio/toxicidade , Exposição Ambiental , Água Subterrânea/análise , Ceratose/induzido quimicamente , Melanose/induzido quimicamente , Dermatopatias/induzido quimicamente , Poluentes Químicos da Água/toxicidade , Adolescente , Adulto , Arsênio/análise , Arsênio/urina , Água Potável/análise , Monitoramento Ambiental , Feminino , Fluorescência , Cabelo/química , Humanos , Índia/epidemiologia , Ceratose/epidemiologia , Masculino , Melanose/epidemiologia , Pessoa de Meia-Idade , Unhas/química , Dermatopatias/epidemiologia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/urina
11.
J Hazard Mater ; 436: 129197, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739727

RESUMO

Arsenic (As) is one of the most prolific natural contaminants in water resources, and hence, it has been recognized as an emerging global problem. Arsenic exposure through food exports and imports, such as As-contaminated rice and cereal-based baby food, is a potential risk worldwide. However, ensuring As-safe drinking water and food for the globe is still not stated explicitly as a right neither in the United Nations' Universal Declaration of Human Rights and the 2030 Sustainable Development Goals (SDGs) nor the global UNESCO priorities. Despite these omissions, addressing As contamination is crucial to ensure and achieve many of the declared human rights, SDGs, and global UNESCO priorities. An international platform for sharing knowledge, experience, and resources through an integrated global network of scientists, professionals, and early career researchers on multidisciplinary aspects of As research can act as an umbrella covering the activities of UN, UNESCO, and other UN organizations. This can deal with the mitigation of As contamination, thus contributing to global economic development and human health. This article provides a perspective on the global As problem for sustainable As mitigation on a global scale by 2030.


Assuntos
Arsênio , Saúde Global , Direitos Humanos , Humanos , Nações Unidas
12.
Sci Total Environ ; 810: 152153, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864037

RESUMO

Groundwater contamination from geogenic sources poses challenges to many countries, especially in the developing world. In Tanzania, the elevated fluoride (F-) concentration and related chronic fluorosis associated with drinking F- rich water are common in the East African Rift Valley regions. In these regions, F- concentration is space dependence which poses much uncertainty when targeting safe source for drinking water. To account for the spatial effects, integrated exploratory spatial data analysis, regression analysis, and geographical information systems tools were used to associate the distribution of F- in groundwater with spatial variability in terrain slopes, volcanic deposits, recharge water/vadose materials contact time, groundwater resource development for irrigated agriculture in the Sanya alluvial plain (SAP) of northern Tanzania. The F- concentration increased with distance from steep slopes where the high scale of variation was recorded in the gentle sloping and flat grounds within the SAP. The areas covered with debris avalanche deposits in the gentle sloping and flat grounds correlated with the high spatial variability in F- concentration. Furthermore, the high spatial variability in F- correlated positively with depth to groundwater in the Sanya flood plain. In contrast, a negative correlation between F- and borehole depth was observed. The current irrigation practices in the Sanya alluvial plain contribute to the high spatial variability in F- concentration, particularly within the perched shallow aquifers in the volcanic river valleys. The findings of this study are important to the overall chain of safe water supply process in historically fluorotic regions. They provide new insights into the well-known F- contamination through the use of modern geospatial methods and technologies. In Tanzania's context, the findings can improve the current process of drilling permits issuance by the authority and guide the local borehole drillers to be precise in siting safe source for drinking water.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Fluoretos/análise , Tanzânia , Poluentes Químicos da Água/análise
13.
Chemosphere ; 289: 133243, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34896417

RESUMO

Dual functional innovative approaches were developed to tackle the algal scum problem in water by utilizing the algal (Spirogyra sp.) biomass waste for organic dye-laden industrial wastewater treatment, a global problem, and challenge. Therefore, an algal biochar-based nanocomposite (nAgBC) was synthesized and employed as a low-cost adsorbent for Congo red (CR) removal. Surface morphology, physicochemical characteristics, elemental composition, phase, and stability of the nanocomposite was analyzed using BET, FESEM-EDX, FTIR, XRD, XPS, and TGA. The nanocomposite was found to be thermostable, mesoporous with large and heterogeneous surface area, containing nAg as doped material, where -OH, NH, CO, CC, SO, and CH are the surface binding active functional groups. Maximum adsorption efficiency of 95.92% (18 mg L-1 CR) was achieved (qe = 34.53 mg g-1) with 0.5 g L-1 of nanocomposite after 60 min, at room temperature (300 K) at pH 6. Isotherm and kinetic model suggested multilayer chemisorption, where adsorption thermodynamics indicated spontaneous reaction. Fluorescens spectral analysis of CR confirmed the formation of CR supramolecule, supporting enhanced adsorption. Furthermore, the result suggested a 5th cycle reusability and considerable efficacy towards real textile industrial effluents. Synergistic effects of the active surface functional groups of the biochar and nAg, along with the overall surface charge of the composite lead to chemisorption, electrostatic attraction, H-bonding, and surface complexation with CR molecules. Thus, synthesized nAgBC can be applicable to mitigate the wastewater for cleaner production and environment.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Biomassa , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Águas Residuárias , Poluentes Químicos da Água/análise
14.
Mar Pollut Bull ; 181: 113905, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35839665

RESUMO

Heavy metals (HM) are the major proximate drivers of pollution in the mangrove ecosystem. Therefore, ecological risk (ER) due to HM distribution/concentration in core-sediment of Puzi mangrove region (Taiwan) was examined with tidal influence (TI) along with indigenous rhizospheric bacteria (IRB). The HM concentration was observed higher at active-tidal-sediment compared to partially-active-sediment. Geo-accumulation index (Igeo) and contamination factor (CF) indicated the tidal-sediment was highly contaminated with arsenic (As) and moderately contaminated with Lead (Pb) and Zinc (Zn). However, the pollution loading index (PLI) and degree of contamination (Cd) exhibited 'no pollution' and 'low-moderate degree of contamination', in the studied region respectively. The isolated IRB (Priestia megaterium, Bacillus safenis, Bacillus aerius, Bacillus subtilis, Bacillus velenzenesis, Bacillus lichenoformis, Kocuria palustris, Enterobacter hormaechei, Pseudomonus fulva, and Paenibacillus favisporus; accession number OM979069-OM979078) exhibited the arsenic resistant behavior with plant-growth-promoting characters (IAA, NH3, and P-solubilization), which can be used in mangrove reforestation and bioremediation of HM.


Assuntos
Arsênio , Metais Pesados , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
Chemosphere ; 307(Pt 2): 135732, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35872057

RESUMO

Geogenic contamination of groundwater is frequently associated with gold mining activities and related to drinking water quality problems worldwide. In Tanzania, elevated levels of trace elements (TEs) have been reported in drinking water sources within the Lake Victoria Basin, posing a serious health risk to communities. The present study aims to assess the groundwater quality with a focus on the concentration levels of geogenic contaminants in groundwater around the Lake Victoria goldfields in Geita and Mara districts. The water samples were collected from community drinking water sources and were analysed for physiochemical parameters (pH, EC, Eh), major ions, and trace elements. The analysed major ions included Na+, K+, Ca2+, Mg2+, SO42-, HCO3- and Cl- whereas the trace elements were As, Al, Li, Ba, B, Ti, V, U, Zr, Sr, Si, Mn Mo, Fe, Ni, Zn, Cr, Pb, Cd, and V. The present study revealed that the concentration levels of the major ions were mostly within the World Health Organization (WHO) drinking water standards in the following order of their relative abundance; for cations, Ca2+∼Na+>Mg2+>K+ and for anions was HCO3- > SO42- > NO3-, Cl- > PO43-. Statistical and geochemical modelling software such as 'R Studio', IBM SPSS, geochemical workbench, visual MINTEQ were used to understand the groundwater chemistry and evaluate its suitability for drinking purpose. The concentration of As in groundwater sources varies between below detection limit (bdl) and 300 µg/L, with highest levels in streams followed by shallow wells and boreholes. In approximately 48% of the analysed samples, As concentration exceeded the WHO drinking water guideline and Tanzania Bureau of Standards (TBS) guideline for drinking water value of 10 µg/L. The concentration of the analyzed TEs and mean values of physicochemical parameters were below the guideline limits based on WHO and TBS standards. The Canadian Council of Ministries of the Environment Water Quality Index (CCME WQI) shows that the overall water quality is acceptable with minimum threats of deviation from natural conditions. We recommend further geochemical exploration and the periodic risk assessment of groundwater in mining areas where high levels of As were recorded.


Assuntos
Água Potável , Água Subterrânea , Oligoelementos , Poluentes Químicos da Água , Cádmio/análise , Canadá , Água Potável/análise , Monitoramento Ambiental , Ouro/análise , Água Subterrânea/análise , Lagos/análise , Chumbo/análise , Tanzânia , Oligoelementos/análise , Poluentes Químicos da Água/análise , Qualidade da Água
16.
J Mater Chem B ; 11(1): 10-32, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484467

RESUMO

The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.


Assuntos
Ciência Ambiental , Nanopartículas Metálicas , Humanos , Química Verde/métodos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Metais , Óxidos
17.
AoB Plants ; 14(4): plac031, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35990516

RESUMO

Environmental DNA (eDNA) analysis has recently transformed and modernized biodiversity monitoring. The accurate detection, and to some extent quantification, of organisms (individuals/populations/communities) in environmental samples is galvanizing eDNA as a successful cost and time-efficient biomonitoring technique. Currently, eDNA's application to plants remains more limited in implementation and scope compared to animals and microorganisms. This review evaluates the development of eDNA-based methods for (vascular) plants, comparing its performance and power of detection with that of traditional methods, to critically evaluate and advise best-practices needed to innovate plant biomonitoring. Recent advancements, standardization and field applications of eDNA-based methods have provided enough scope to utilize it in conservation biology for numerous organisms. Despite our review demonstrating only 13% of all eDNA studies focus on plant taxa to date, eDNA has considerable environmental DNA has considerable potential for plants, where successful detection of invasive, endangered and rare species, and community-level interpretations have provided proof-of-concept. Monitoring methods using eDNA were found to be equal or more effective than traditional methods; however, species detection increased when both methods were coupled. Additionally, eDNA methods were found to be effective in studying species interactions, community dynamics and even effects of anthropogenic pressure. Currently, elimination of potential obstacles (e.g. lack of relevant DNA reference libraries for plants) and the development of user-friendly protocols would greatly contribute to comprehensive eDNA-based plant monitoring programs. This is particularly needed in the data-depauperate tropics and for some plant groups (e.g., Bryophytes and Pteridophytes). We further advocate to coupling traditional methods with eDNA approaches, as the former is often cheaper and methodologically more straightforward, while the latter offers non-destructive approaches with increased discrimination ability. Furthermore, to make a global platform for eDNA, governmental and academic-industrial collaborations are essential to make eDNA surveys a broadly adopted and implemented, rapid, cost-effective and non-invasive plant monitoring approach.

18.
J Nanosci Nanotechnol ; 11(6): 5034-41, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21770140

RESUMO

Rose-like ZnO nanostructures were synthesized by the precipitation method using a biosurfactant (surfactin) as a templating-agent stabilizer. The concentration of surfactin in the precursor solution significantly influenced the thickness and density of the petals in the rose-like structures, and all samples were of a wurtzite phase. The thickness of the petal was found to decrease with increasing surfactin concentration. The average thickness of the petals was found to be between 10 and 13 nm. Photocatalytic degradation of methylene blue using rose-like ZnO nanostuctures was investigated, and the morphology, density and thickness of the ZnO petals were found to influence the photodegradation activity. The samples with loosely-spread petals, or plate-like ZnO structures, brought about the strongest photodegradation in comparison with the dense rose-like structures. The greater activity of the loose-petal structures was correlated with their higher absorption in the UV region in comparison with the other samples. The ZnO samples prepared using low surfactin concentrations had higher rate constant values, i.e., 9.1 x 10(-3) min(-1), which revealed that the photodegradation of methylene blue under UV irradiation progressed by a pseudo first-order kinetic reaction.


Assuntos
Lipopeptídeos/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Peptídeos Cíclicos/química , Óxido de Zinco/química , Catálise , Cinética , Azul de Metileno/química , Microscopia Eletrônica de Varredura , Fotólise , Tensoativos/química , Temperatura , Difração de Raios X
19.
Int J Mol Sci ; 12(6): 3821-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747709

RESUMO

In this study the "green chemistry" use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM) resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000). The particle sizes were found to be in the 16-200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter) and needle-like (8-14 nm in diameter and 80-100 nm in length) noncalcinated particles. However, the calcinated products included nanospheres (50-200 nm in diameter), oval (~300 nm in diameter) and nanorod (200-400 nm in length) particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles.


Assuntos
Fosfatos de Cálcio/síntese química , Emulsões/química , Lipopeptídeos/química , Peptídeos Cíclicos/química , Tensoativos/química , Compostos de Cálcio/química , Fosfatos de Cálcio/química , Cristalização , Nanopartículas/química , Nanopartículas/ultraestrutura , Nitratos/química , Tamanho da Partícula , Fosfatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
20.
Int J Mol Sci ; 12(11): 8245-58, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174661

RESUMO

The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required < 10 × CMC and Tween-80 >10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4%) by surfactin being 1.53. Dilute solutions (2-mg L(-1) Hg(2+)) resulted in better separation (36.4%), while concentrated solutions (100 mg L(-1)) enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions.


Assuntos
Fracionamento Químico/métodos , Lipopeptídeos/química , Mercúrio/isolamento & purificação , Peptídeos Cíclicos/química , Tensoativos/química , Bacillus subtilis/química , Concentração de Íons de Hidrogênio , Íons/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA