Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 259(3): 55, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300324

RESUMO

MAIN CONCLUSION: SlGCC, a GARP transcription factor, functions as a root-related transcriptional repressor. SlGCC synchronizes auxin and ethylene signaling involving SlPIN3 and SlIAA3 as intermediate targets sketching a molecular map for lateral root development in tomato. The root system is crucial for growth and development of plants as it performs basic functions such as providing mechanical support, nutrients and water uptake, pathogen resistance and responds to various stresses. SlGCC, a GARP family transcription factor (TF), exhibited predominant expression in age-dependent (initial to mature stages) tomato root. SlGCC is a transcriptional repressor and is regulated at a transcriptional and translational level by auxin and ethylene. Auxin and ethylene mediated SlGCC protein stability is governed via proteasome degradation pathway during lateral root (LR) growth development. SlGCC over-expressor (OE) and under-expressed (UE) tomato transgenic lines demonstrate its role in LR development. This study is an attempt to unravel the vital role of SlGCC in regulating tomato LR architecture.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/genética , Solanum lycopersicum/genética , Etilenos , Ácidos Indolacéticos , Complexo de Endopeptidases do Proteassoma
3.
Trends Plant Sci ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38584080

RESUMO

During the course of terrestrial evolution, plants have developed complex networks that involve the coordination of phytohormone signalling pathways in order to adapt to an ever-changing environment. Transcription factors coordinate these responses by engaging in different protein complexes and exerting both positive and negative effects. ABA INSENSITIVE 5 (ABI5) binding proteins (AFPs), which are closely related to NOVEL INTERACTOR OF JAZ (NINJA)-like proteins, are known for their fundamental role in plants' morphological and physiological growth. Recent studies have shown that AFPs regulate several hormone-signalling pathways, including abscisic acid (ABA) and gibberellic acid (GA). Here, we review the genetic control of AFPs and their crosstalk with plant hormone signalling, and discuss the contributions of AFPs to plants' growth and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA