Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(10): 2699-2704, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223512

RESUMO

Mutations in the glucocerebrosidase gene (GBA) confer a heightened risk of developing Parkinson's disease (PD) and other synucleinopathies, resulting in a lower age of onset and exacerbating disease progression. However, the precise mechanisms by which mutations in GBA increase PD risk and accelerate its progression remain unclear. Here, we investigated the merits of glucosylceramide synthase (GCS) inhibition as a potential treatment for synucleinopathies. Two murine models of synucleinopathy (a Gaucher-related synucleinopathy model, GbaD409V/D409V and a A53T-α-synuclein overexpressing model harboring wild-type alleles of GBA, A53T-SNCA mouse model) were exposed to a brain-penetrant GCS inhibitor, GZ667161. Treatment of GbaD409V/D409V mice with the GCS inhibitor reduced levels of glucosylceramide and glucosylsphingosine in the central nervous system (CNS), demonstrating target engagement. Remarkably, treatment with GZ667161 slowed the accumulation of hippocampal aggregates of α-synuclein, ubiquitin, and tau, and improved the associated memory deficits. Similarly, prolonged treatment of A53T-SNCA mice with GZ667161 reduced membrane-associated α-synuclein in the CNS and ameliorated cognitive deficits. The data support the contention that prolonged antagonism of GCS in the CNS can affect α-synuclein processing and improve behavioral outcomes. Hence, inhibition of GCS represents a disease-modifying therapeutic strategy for GBA-related synucleinopathies and conceivably for certain forms of sporadic disease.


Assuntos
Carbamatos/farmacologia , Inibidores Enzimáticos/administração & dosagem , Glucosiltransferases/antagonistas & inibidores , Doença de Parkinson/tratamento farmacológico , Quinuclidinas/farmacologia , alfa-Sinucleína/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glucosiltransferases/genética , Humanos , Camundongos , Mutação , Doença de Parkinson/enzimologia , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ubiquitina/metabolismo , Proteínas tau/metabolismo
2.
ACS Med Chem Lett ; 11(10): 2010-2016, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062186

RESUMO

Metachromatic leukodystrophy (MLD) is a rare, genetic lysosomal storage disorder caused by the deficiency of arylsulfatase A enzyme, which results in the accumulation of sulfatide in the lysosomes of the tissues of central and peripheral nervous systems, leading to progressive demyelination and neurodegeneration. Currently there is no cure for this disease, and the only approved therapy, hematopoietic stem cell transplant, has limitations. We proposed substrate reduction therapy (SRT) as a novel approach to treat this disease, by inhibiting ceramide galactosyltransferase enzyme (UGT8). This resulted in the identification of a thienopyridine scaffold as a starting point to initiate medicinal chemistry. Further optimization of hit compound 1 resulted in the identification of brain penetrable, orally bioavailable compound 19, which showed efficacy in the in vivo pharmacodynamic models, indicating the potential to treat MLD with UGT8 inhibitors.

3.
Sci Rep ; 8(1): 4994, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29556060

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Sci Rep ; 8(1): 3681, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487322

RESUMO

Certain recessively inherited diseases result from an enzyme deficiency within lysosomes. In mucopolysaccharidoses (MPS), a defect in glycosaminoglycan (GAG) degradation leads to GAG accumulation followed by progressive organ and multiple system dysfunctions. Current methods of GAG analysis used to diagnose and monitor the diseases lack sensitivity and throughput. Here we report a LC-MS method with accurate metabolite mass analysis for identifying and quantifying biomarkers for MPS type I without the need for extensive sample preparation. The method revealed 225 LC-MS features that were >1000-fold enriched in urine, plasma and tissue extracts from untreated MPS I mice compared to MPS I mice treated with iduronidase to correct the disorder. Levels of several trisaccharides were elevated >10000-fold. To validate the clinical relevance of our method, we confirmed the presence of these biomarkers in urine, plasma and cerebrospinal fluid from MPS I patients and assessed changes in their levels after treatment.


Assuntos
Biomarcadores/sangue , Biomarcadores/urina , Mucopolissacaridose I/sangue , Mucopolissacaridose I/urina , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Feminino , Glicosaminoglicanos/sangue , Heparitina Sulfato/sangue , Humanos , Iduronidase/sangue , Masculino , Camundongos , Trissacarídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA