Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Hepatol ; 77(5): 1359-1372, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35738508

RESUMO

BACKGROUND & AIMS: The landscape and function of the immune infiltrate of intrahepatic cholangiocarcinoma (iCCA), a rare, yet aggressive tumor of the biliary tract, remains poorly characterized, limiting development of successful immunotherapies. Herein, we aimed to define the molecular characteristics of tumor-infiltrating leukocytes with a special focus on CD4+ regulatory T cells (Tregs). METHODS: We used high-dimensional single-cell technologies to characterize the T-cell and myeloid compartments of iCCA tissues, comparing these with their tumor-free peritumoral and circulating counterparts. We further used genomics and cellular assays to define the iCCA-specific role of a novel transcription factor, mesenchyme homeobox 1 (MEOX1), in Treg biology. RESULTS: We found poor infiltration of putative tumor-specific CD39+ CD8+ T cells accompanied by abundant infiltration of hyperactivated CD4+ Tregs. Single-cell RNA-sequencing identified an altered network of transcription factors in iCCA-infiltrating compared to peritumoral T cells, suggesting reduced effector functions by tumor-infiltrating CD8+ T cells and enhanced immunosuppression by CD4+ Tregs. Specifically, we found that expression of MEOX1 was highly enriched in tumor-infiltrating Tregs, and demonstrated that MEOX1 overexpression is sufficient to reprogram circulating Tregs to acquire the transcriptional and epigenetic landscape of tumor-infiltrating Tregs. Accordingly, enrichment of the MEOX1-dependent gene program in Tregs was strongly associated with poor prognosis in a large cohort of patients with iCCA. CONCLUSIONS: We observed abundant infiltration of hyperactivated CD4+ Tregs in iCCA tumors along with reduced CD8+ T-cell effector functions. Interfering with hyperactivated Tregs should be explored as an approach to enhance antitumor immunity in iCCA. LAY SUMMARY: Immune cells have the potential to slow or halt the progression of tumors. However, some tumors, such as intrahepatic cholangiocarcinoma, are associated with very limited immune responses (and infiltration of cancer-targeting immune cells). Herein, we show that a specific population of regulatory T cells (a type of immune cell that actually suppresses the immune response) are hyperactivated in intrahepatic cholangiocarcinoma. Targeting these cells could enable cancer-targeting immune cells to act more effectively and should be looked at as a potential therapeutic approach to this aggressive cancer type.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , RNA/metabolismo , Linfócitos T Reguladores , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Análise de Célula Única
2.
Cancer Cell ; 42(7): 1152-1154, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981434

RESUMO

In this issue of Cancer Cell, Espinosa-Carrasco et al. show that the efficacy of cancer immunotherapies depends upon the formation of intratumoral immune triads between antigen-presenting cells and antigen-specific CD4+ and CD8+ T cells. This interaction reprograms tumor-specific CD8+ T cells to exert potent effector functions and eradicate established solid tumors.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Linfócitos T CD8-Positivos/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Animais , Linfócitos T CD4-Positivos/imunologia , Células Apresentadoras de Antígenos/imunologia , Camundongos
3.
Vaccines (Basel) ; 10(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35632496

RESUMO

Immunotherapy using immune checkpoint modulators has revolutionized the oncology field, emerging as a new standard of care for multiple indications, including non-small cell lung cancer (NSCLC). However, prognosis for patients with lung cancer is still poor. Although immunotherapy is highly effective in some cases, not all patients experience significant or durable responses, and further strategies are needed to improve outcomes. Therapeutic cancer vaccines are designed to exploit the body's immune system to activate long-lasting memory against tumor cells that ensure tumor regression, with minimal toxicity. A unique feature of cancer vaccines lies in their complementary approach to boost antitumor immunity that could potentially act synergistically with immune checkpoint inhibitors (ICIs). However, single-line immunization against tumor epitopes with vaccine-based therapeutics has been disappointingly unsuccessful, to date, in lung cancer. The high level of success of several recent vaccines against SARS-CoV-2 has highlighted the evolving advances in science and technology in the vaccines field, raising hope that this strategy can be successfully applied to cancer treatments. In this review, we describe the biology behind the cancer vaccines, and discuss current evidence for the different types of therapeutic cancer vaccines in NSCLC, including their mechanisms of action, current clinical development, and future strategies.

4.
Nat Commun ; 12(1): 5209, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471106

RESUMO

TGF-ß is secreted in the tumour microenvironment in a latent, inactive form bound to latency associated protein and activated by the integrin αV subunit. The activation of latent TGF-ß by cancer-cell-expressed αV re-shapes the tumour microenvironment, and this could affect patient responses to PD-1-targeting therapy. Here we show, using multiplex immunofluorescence staining in cohorts of anti-PD-1 and anti-PD-L1-treated lung cancer patients, that decreased expression of cancer cell αV is associated with improved immunotherapy-related, progression-free survival, as well as with an increased density of CD8+CD103+ tumour-infiltrating lymphocytes. Mechanistically, tumour αV regulates CD8 T cell recruitment, induces CD103 expression on activated CD8+ T cells and promotes their differentiation to granzyme B-producing CD103+CD69+ resident memory T cells via autocrine TGF-ß signalling. Thus, our work provides the underlying principle of targeting cancer cell αV for more efficient PD-1 checkpoint blockade therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Integrina alfaV/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antígenos CD , Antígeno B7-H1 , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia , Cadeias alfa de Integrinas , Neoplasias Pulmonares/tratamento farmacológico , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
5.
Cancers (Basel) ; 12(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781527

RESUMO

Biliary tract cancers (BTCs) are a group of rare cancers that account for up to 3-5% of cancer patients worldwide. BTCs include cholangiocarcinoma (CCA), gallbladder cancer (GBC), and ampulla of Vater cancer (AVC). They are frequently diagnosed at an advanced stage when the disease is often found disseminated. A late diagnosis highly compromises surgery, the only potentially curative option. Current treatment regimens include a combination of chemotherapeutic drugs gemcitabine with cisplatin that have a limited efficiency since more than 50% of patients relapse in the first year. More recently, an inhibitor of fibroblast growth factor receptor 2 (FGFR2) was approved as a second-line treatment, based on the promising results from the NCT02924376 clinical trial. However, novel secondary treatment options are urgently needed. Recent molecular characterization of CCA and GBC highlighted the molecular heterogeneity, etiology, and epidemiology in BTC development and lead to the classification of the extrahepatic CCA into four types: metabolic, proliferating, mesenchymal, and immune type. Differences in the immune infiltration and tumor microenvironment (TME) have been described as well, showing that only a small subset of BTCs could be classified as an immune "hot" and targeted with the immunotherapeutic drugs. This recent evidence has opened a way to new clinical trials for BTCs, and new drug approvals are highly expected by the medical community.

6.
Cell Rep Med ; 1(7): 100127, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33205076

RESUMO

Accumulation of CD103+CD8+ resident memory T (TRM) cells in human lung tumors has been associated with a favorable prognosis. However, the contribution of TRM to anti-tumor immunity and to the response to immune checkpoint blockade has not been clearly established. Using quantitative multiplex immunofluorescence on cohorts of non-small cell lung cancer patients treated with anti-PD-(L)1, we show that an increased density of CD103+CD8+ lymphocytes in immunotherapy-naive tumors is associated with greatly improved outcomes. The density of CD103+CD8+ cells increases during immunotherapy in most responder, but not in non-responder, patients. CD103+CD8+ cells co-express CD49a and CD69 and display a molecular profile characterized by the expression of PD-1 and CD39. CD103+CD8+ tumor TRM, but not CD103-CD8+ tumor-infiltrating counterparts, express Aiolos, phosphorylated STAT-3, and IL-17; demonstrate enhanced proliferation and cytotoxicity toward autologous cancer cells; and frequently display oligoclonal expansion of TCR-ß clonotypes. These results explain why CD103+CD8+ TRM are associated with better outcomes in anti-PD-(L)1-treated patients.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígenos CD8/genética , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Citotoxicidade Imunológica/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/imunologia , Memória Imunológica , Imunoterapia/métodos , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Ativação Linfocitária/efeitos dos fármacos , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/patologia , Fosforilação , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Estudos Retrospectivos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Transdução de Sinais , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
7.
Front Immunol ; 10: 1505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333652

RESUMO

Recent advances in lung cancer treatment are emerging from new immunotherapies that target T-cell inhibitory receptors, such as programmed cell death-1 (PD-1). However, responses to anti-PD-1 antibodies as single agents are observed in fewer than 20% of non-small-cell lung cancer (NSCLC) patients, and immune mechanisms involved in the response to these therapeutic interventions remain poorly elucidated. Accumulating evidence indicates that effective anti-tumor immunity is associated with the presence of T cells directed toward cancer neoepitopes, a class of major histocompatibility complex (MHC)-bound peptides that arise from tumor-specific mutations. Nevertheless, tumors frequently use multiple pathways to escape T-cell recognition and destruction. In this regard, primary and acquired resistance to immune checkpoint blockade (ICB) therapy was associated with alterations in genes relevant to antigen presentation by MHC-class I/beta-2-microglobulin (MHC-I/ß2m) complexes to CD8 T lymphocytes. Among additional known mechanisms involved in tumor resistance to CD8 T-cell immunity, alterations in transporter associated with antigen processing (TAP) play a major role by inducing a sharp decrease in surface expression of MHC-I/ß2m-peptide complexes, enabling malignant cells to evade cytotoxic T lymphocyte (CTL)-mediated killing. Therefore, development of novel immunotherapies based on tumor neoantigens, that are selectively presented by cancer cells carrying defects in antigen processing and presentation, and that are capable of inducing destruction of such transformed cells, is a major challenge in translational research for application in treatment of lung cancer. In this context, we previously identified a non-mutant tumor neoepitope, ppCT16-25, derived from the preprocalcitonin (ppCT) leader sequence and processed independently of proteasomes/TAP by a mechanism involving signal peptidase (SP) and signal peptide peptidase (SPP). We also provided in vitro and in vivo proof of the concept of active immunotherapy based on ppCT-derived peptides capable of controlling growth of immune-escaped tumors expressing low levels of MHC-I molecules. Thus, non-mutant and mutant neoepitopes are promising T-cell targets for therapeutic cancer vaccines in combination with ICB. In this review, we summarize current treatments for lung cancer and discuss the promises that conserved neoantigens offer for more effective immunotherapies targeting immune-escaped tumor variants.


Assuntos
Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Carcinoma Pulmonar de Células não Pequenas , Epitopos de Linfócito T/imunologia , Imunoterapia , Neoplasias Pulmonares , Linfócitos T Citotóxicos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia
8.
J Immunother Cancer ; 6(1): 87, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180905

RESUMO

CD8+ T lymphocytes are the major anti-tumor effector cells. Most cancer immunotherapeutic approaches seek to amplify cytotoxic T lymphocytes (CTL) specific to malignant cells. A recently identified subpopulation of memory CD8+ T cells, named tissue-resident memory T (TRM) cells, persists in peripheral tissues and does not recirculate. This T-cell subset is considered an independent memory T-cell lineage with a specific profile of transcription factors, including Runx3+, Notch+, Hobit+, Blimp1+, BATF+, AHR+, EOMESneg and Tbetlow. It is defined by expression of CD103 (αE(CD103)ß7) and CD49a (VLA-1 or α1ß1) integrins and C-type lectin CD69, which are most likely involved in retention of TRM cells in non-lymphoid tissues, including solid tumors. CD103 binds to the epithelial cell marker E-cadherin, thereby favoring the location and retention of TRM in epithelial tumor regions in close contact with malignant cells. The CD103-E-cadherin interaction is required for polarized exocytosis of lytic granules, in particular, when ICAM-1 expression on cancer cells is missing, leading to target cell death. TRM cells also express high levels of granzyme B, IFNγ and TNFα, supporting their cytotoxic features. Moreover, the local route of immunization targeting tissue dendritic cells (DC), and the presence of environmental factors (i.e. TGF-ß, IL-33 and IL-15), promote differentiation of this T-cell subtype. In both spontaneous tumor models and engrafted tumors, natural TRM cells or cancer-vaccine-induced TRM directly control tumor growth. In line with these results, TRM infiltration into various human cancers, including lung cancer, are correlated with better clinical outcome in both univariate and multivariate analyses independently of CD8+ T cells. TRM cells also predominantly express checkpoint receptors such as PD-1, CTLA-4 and Tim-3. Blockade of PD-1 with neutralizing antibodies on TRM cells isolated from human lung cancer promotes cytolytic activity toward autologous tumor cells. Thus, TRM cells appear to represent important components in tumor immune surveillance. Their induction by cancer vaccines or other immunotherapeutic approaches may be critical for the success of these treatments. Several arguments, such as their close contact with tumor cells, dominant expression of checkpoint receptors and their recognition of cancer cells, strongly suggest that they may be involved in the success of immune checkpoint inhibitors in various cancers.


Assuntos
Imunidade , Memória Imunológica , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Biomarcadores , Humanos , Vigilância Imunológica , Imunofenotipagem , Imunoterapia , Ativação Linfocitária/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Fenótipo , Prognóstico , Receptores Imunológicos/metabolismo , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA