Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Esthet Restor Dent ; 36(2): 391-401, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37680013

RESUMO

OBJECTIVE: To evaluate the flexural strength and fatigue behavior of a novel 3D-printed composite resin for definitive restorations. MATERIALS AND METHODS: Fifty disc-shaped specimens were manufactured from each of a nanohybrid composite resin (NHC), polymer-infiltrated ceramic network (PICN), and 3D-printed composite resin (3D) with CAD-CAM technology. Biaxial flexural strength (σin ) (n = 30 per group) and biaxial flexural fatigue strength (σff ) (n = 20 per group) were measured using piston-on-three-balls method, employing a staircase approach of 105 cycles. Weibull statistics, relative-strength degradation calculations, and fractography were performed. The results were analyzed with 1-way ANOVA and Games-Howell post hoc test (α = 0.05). RESULTS: Significant differences in σin and σff among the groups (p < 0.001) were detected. The NHC group provided the highest mean ± standard deviation σin and σff (237.3 ± 31.6 MPa and 141.3 ± 3.8 MPa), followed by the PICN (140.3 ± 12.9 MPa and 73.5 ± 9.9 MPa) and the 3D (83.6 ± 18.5 MPa and 37.4 ± 23.8 MPa) groups. The 3D group exhibited significantly lower Weibull modulus (m = 4.7) and up to 15% higher relative strength degradation with areas of nonhomogeneous microstructure as possible fracture origins. CONCLUSIONS: The 3D-printed composite resin exhibited the lowest mechanical properties, where areas of nonhomogeneous microstructure developed during the mixing procedure served as potential fracture origins. CLINICAL SIGNIFICANCE: The clinical indications of the investigated novel 3D-printed composite resin should be limited to long-term provisional restorations. A cautious procedure for mixing the components is crucial before the 3D-printing process, since nonhomogeneous areas developed during the mixing could act as fracture origins.


Assuntos
Cerâmica , Resinas Compostas , Resinas Compostas/química , Teste de Materiais , Cerâmica/química , Resistência à Flexão , Impressão Tridimensional , Desenho Assistido por Computador , Polímeros , Propriedades de Superfície
2.
J Prosthet Dent ; 129(5): 725-731, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34420804

RESUMO

STATEMENT OF PROBLEM: The debonding of zirconia cantilevered resin-bonded fixed dental prostheses remains a technical complication because zirconia's chemical inertness impedes adequate surface preparation for bonding. Limited clinical evidence on the performance of various pretreatment methods for the bonding surface of zirconia resin-bonded fixed dental prostheses is available. PURPOSE: The present prospective, randomized, controlled clinical trial aimed at evaluating the performance of zirconia resin-bonded fixed dental prostheses prepared with nanostructured alumina coating. MATERIAL AND METHODS: The study adopted a prospective, randomized, controlled, double-blind (patients, operator) design to compare the performance of nanostructured alumina coating with that of conventional airborne-particle abrasion. Twenty-seven healthy patients needing a replacement of a missing maxillary or mandibular central or lateral incisor were screened and rated to be eligible, and 31 zirconia cantilevered resin-bonded fixed dental prostheses were randomly allocated into 1 of 2 groups. The first group (n=15), where the restoration bonding surface was airborne-particle abraded with 50-µm alumina, served as a control group. In the second group (n=16), the restorations were pretreated with nanostructured alumina coating. Treatment and data collection were standardized. The primary outcome evaluated was the survival of the RBFDPs as defined by the restoration not debonding. The Kaplan-Meier analysis of cumulative survival was performed, and nonparametric tests were used to determine patient-specific differences between both study groups (age, sex, restored arch, tooth replaced, bonding surface area) (α=.05). Retainer wing surfaces of debonded resin-bonded fixed dental prostheses were inspected under a scanning electron microscope. RESULTS: Within a mean ±standard deviation observation period of 22.4 ±7.7 months (minimum, 8.3; maximum, 37.9 months), 3 debondings occurred, and the survival rate was 90.3%. The survival rate was 93.8% for the nanostructured alumina coating and 86.7% for the control group, with no statistically significant differences (log-rank, P=.54). No patient-specific differences were found between study groups (P>.05). As per the scanning electron micrographs, the majority of the nanostructured alumina-coated surfaces had large areas of nanostructured alumina residue, whereas the airborne-particle abraded surfaces exhibited predominantly adhesive failure with less cement residue. CONCLUSIONS: Over a mean observation period of 2 years, both zirconia pretreatments showed promising and comparable clinical results; therefore, nanostructured alumina coating could be regarded as a viable alternative pretreatment method to airborne-particle abrasion.


Assuntos
Colagem Dentária , Prótese Dentária , Humanos , Colagem Dentária/métodos , Óxido de Alumínio/química , Estudos Prospectivos , Cimentos de Resina/química , Zircônio/química , Propriedades de Superfície
3.
Cleft Palate Craniofac J ; 58(7): 912-918, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33063533

RESUMO

Missing lateral incisors are the most frequent dental disorder associated with cleft alveolus. When orthodontic closure of the edentulous space is not possible, more aggressive prosthodontic treatments are required. Contemporary resin-bonded fixed dental prostheses (RBFDPs) represent a promising, time-efficient alternative treatment with fewer biological complications. This clinical report proposes a modified approach to the esthetic rehabilitation of a patient with a complete unilateral cleft lip and palate on the left side and an incomplete cleft lip and alveolar cleft on the right side. Digital diagnostics, treatment planning, and clinical procedures involved in the fabrication of facially bonded RBFDPs are presented. This modified technique enables the concurrent replacement of lateral incisors and correction of the malformed central incisors as well as increasing the retention of the restorations.


Assuntos
Fenda Labial , Fissura Palatina , Fenda Labial/cirurgia , Fissura Palatina/cirurgia , Estética Dentária , Humanos , Incisivo , Prostodontia
4.
Materials (Basel) ; 16(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37048940

RESUMO

Debonding of zirconia cantilevered resin-bonded fixed dental prostheses (RBFDPs) remains the main treatment complication, therefore, the present in vitro study aimed to evaluate the effect of different surface pretreatments on the bonding of zirconia RBFDPs. Eighty milled zirconia maxillary central incisors, with complementary zirconia cantilevered RBFDPs, were randomly subjected to four different surface pretreatments (n = 20): as-machined (AM); airborne-particle abraded (APA); coated with nanostructured alumina coating (NAC); incisor air-abraded and RBFDP coated (NAC_APA). After bonding, half of each group (n = 10) was stored in deionized water (150 days/37 °C), thermocycled (37,500 cycles, 5-55 °C), and cyclically loaded (50 N/1.2 × 106). Load-bearing capacity (LBC) was determined using a quasi-static test. Additionally, finite element analysis (FEA) and fractography were performed. t-test and one-way ANOVA were used for statistical-analysis. Before aging, the NAC group provided superior LBC to other groups (p < 0.05). After aging, the AM specimens debonded spontaneously, while other groups exhibited comparable LBC (p ˃ 0.05). The FEA results correlated with the in vitro experiment and fractography, showing highly stressed areas in the bonding interface, cement layer, and in RBFDP's retainer wing and connector. The NAC RBFDPs exhibited comparable long-term bonding performance to APA and should be regarded as a zirconia pretreatment alternative to APA.

5.
Materials (Basel) ; 16(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110011

RESUMO

Hydraulic calcium silicate-based cements (HCSCs) have become a superior bioceramic alternative to epoxy-based root canal sealers in endodontics. A new generation of purified HCSCs formulations has emerged to address the several drawbacks of original Portland-based mineral trioxide aggregate (MTA). This study was designed to assess the physio-chemical properties of a ProRoot MTA and compare it with newly formulated RS+, a synthetic HCSC, by advanced characterisation techniques that allow for in situ analyses. Visco-elastic behaviour was monitored with rheometry, while phase transformation kinetics were followed by X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and Raman spectroscopies. Scanning electron microscopy with energy-dispersive spectroscopy, SEM-EDS, and laser-diffraction analyses was performed to evaluate the compositional and morphological characteristics of both cements. While the kinetics of surface hydration of both powders, when mixed with water, were comparable, an order of magnitude finer particle size distribution of RS+ coupled with the modified biocompatible formulation proved pivotal in its ability to exert predictable viscous flow during working time, and it was more than two times faster in viscoelastic-to-elastic transition, reflecting improved handling and setting behaviour. Finally, RS+ could be completely transformed into hydration products, i.e., calcium silicate hydrate and calcium hydroxide, within 48 h, while hydration products were not yet detected by XRD in ProRoot MTA and were obviously bound to particulate surface in a thin film. Because of the favourable rheological and faster setting kinetics, synthetic, finer-grained HCSCs, such as RS+, represent a viable option as an alternative to conventional MTA-based HCSCs for endodontic treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA