Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 6(7): 4236-4246, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32685675

RESUMO

The multiscale organization of protein-based fibrillar materials is a hallmark of many organs, but the recapitulation of hierarchal structures down to fibrillar scales, which is a requirement for withstanding physiological loading forces, has been challenging. We present a microfluidic strategy for the continuous, large-scale formation of strong, handleable, free-standing, multicentimeter-wide collagen sheets of unprecedented thinness through the application of hydrodynamic focusing with the simultaneous imposition of strain. Sheets as thin as 1.9 µm displayed tensile strengths of 0.5-2.7 MPa, Young's moduli of 3-36 MPa, and modulated the diffusion of molecules as a function of collagen nanoscale structure. Smooth muscle cells cultured on engineered sheets oriented in the direction of aligned collagen fibrils and generated coordinated vasomotor responses. The described biofabrication approach enables rapid formation of ultrathin collagen sheets that withstand physiologically relevant loads for applications in tissue engineering and regenerative medicine, as well as in organ-on-chip and biohybrid devices.


Assuntos
Colágeno , Matriz Extracelular , Anisotropia , Resistência à Tração , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA