RESUMO
BACKGROUND: Tuberculosis (TB) remains a major public health problem globally, even compared to COVID-19. Genome-wide studies have failed to discover genes that explain a large proportion of genetic risk for adult pulmonary TB, and even fewer have examined genetic factors underlying TB severity, an intermediate trait impacting disease experience, quality of life, and risk of mortality. No prior severity analyses used a genome-wide approach. METHODS AND FINDINGS: As part of our ongoing household contact study in Kampala, Uganda, we conducted a genome-wide association study (GWAS) of TB severity measured by TBScore, in two independent cohorts of culture-confirmed adult TB cases (n = 149 and n = 179). We identified 3 SNPs (P<1.0 x 10-7) including one on chromosome 5, rs1848553, that was GWAS significant (meta-analysis p = 2.97x10-8). All three SNPs are in introns of RGS7BP and have effect sizes corresponding to clinically meaningful reductions in disease severity. RGS7BP is highly expressed in blood vessels and plays a role in infectious disease pathogenesis. Other genes with suggestive associations defined gene sets involved in platelet homeostasis and transport of organic anions. To explore functional implications of the TB severity-associated variants, we conducted eQTL analyses using expression data from Mtb-stimulated monocyte-derived macrophages. A single variant (rs2976562) associated with monocyte SLA expression (p = 0.03) and subsequent analyses indicated that SLA downregulation following MTB stimulation associated with increased TB severity. Src Like Adaptor (SLAP-1), encoded by SLA, is highly expressed in immune cells and negatively regulates T cell receptor signaling, providing a potential mechanistic link to TB severity. CONCLUSIONS: These analyses reveal new insights into the genetics of TB severity with regulation of platelet homeostasis and vascular biology being central to consequences for active TB patients. This analysis also reveals genes that regulate inflammation can lead to differences in severity. Our findings provide an important step in improving TB patient outcomes.
Assuntos
Tuberculose , Adulto , Humanos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Inflamação/genética , Polimorfismo de Nucleotídeo Único , Qualidade de Vida , Tuberculose/genética , Uganda , Locos de Características QuantitativasRESUMO
One in three people has been infected with Mycobacterium tuberculosis (MTB), and the risk for MTB infection in HIV-infected individuals is even higher. We hypothesized that HIV-positive individuals living in tuberculosis-endemic regions who do not get infected by Mycobacterium tuberculosis are genetically resistant. Using an "experiment of nature" design that proved successful in our previous work, we performed a genome-wide association study of tuberculin skin test positivity using 469 HIV-positive patients from prospective study cohorts of tuberculosis from Tanzania and Uganda to identify genetic loci associated with MTB infection in the context of HIV-infection. Among these individuals, 244 tested were tuberculin skin test (TST) positive either at enrollment or during the >8 year follow up, while 225 were not. We identified a genome-wide significant association between a dominant model of rs877356 and binary TST status in the combined cohort (Odds ratio = 0.2671, p = 1.22x10-8). Association was replicated with similar significance when examining TST induration as a continuous trait. The variant lies in the 5q31.1 region, 57kb downstream from IL9. Two-locus analyses of association of variants near rs877356 showed a haplotype comprised of rs877356 and an IL9 missense variant, rs2069885, had the most significant association (p = 1.59x10-12). We also replicated previously linked loci on chromosomes 2, 5, and 11. IL9 is a cytokine produced by mast cells and TH2 cells during inflammatory responses, providing a possible link between airway inflammation and protection from MTB infection. Our results indicate that studying uninfected, HIV-positive participants with extensive exposure increases the power to detect associations in complex infectious disease.
Assuntos
Cromossomos Humanos Par 5/genética , Estudo de Associação Genômica Ampla , Infecções por HIV/genética , Tuberculose/genética , Adulto , Doenças Endêmicas , Feminino , HIV/genética , HIV/patogenicidade , Infecções por HIV/complicações , Infecções por HIV/microbiologia , Infecções por HIV/virologia , Haplótipos/genética , Humanos , Masculino , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Testes Cutâneos , Tanzânia , Teste Tuberculínico , Tuberculose/complicações , Tuberculose/microbiologia , Tuberculose/virologia , UgandaRESUMO
Tuberculosis (TB) is a major public health burden worldwide, and more effective treatment is sorely needed. Consequently, uncovering causes of resistance to Mycobacterium tuberculosis (Mtb) infection is of special importance for vaccine design. Resistance to Mtb infection can be defined by a persistently negative tuberculin skin test (PTST-) despite living in close and sustained exposure to an active TB case. While susceptibility to Mtb is, in part, genetically determined, relatively little work has been done to uncover genetic factors underlying resistance to Mtb infection. We examined a region on chromosome 2q previously implicated in our genomewide linkage scan by a targeted, high-density association scan for genetic variants enhancing PTST- in two independent Ugandan TB household cohorts (n = 747 and 471). We found association with SNPs in neighboring genes ZEB2 and GTDC1 (peak meta p = 1.9 × 10-5) supported by both samples. Bioinformatic analysis suggests these variants may affect PTST- by regulating the histone deacetylase (HDAC) pathway, supporting previous results from transcriptomic analyses. An apparent protective effect of PTST- against body-mass wasting suggests a link between resistance to Mtb infection and healthy body composition. Our results provide insight into how humans may escape latent Mtb infection despite heavy exposure.
Assuntos
Cromossomos Humanos Par 2/genética , Glicosiltransferases/genética , Tuberculose/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Adolescente , Índice de Massa Corporal , Criança , Resistência à Doença , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Infecções por HIV/complicações , Histona Desacetilase 1/metabolismo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Teste Tuberculínico , Tuberculose/complicações , Tuberculose/prevenção & controle , Uganda , Adulto JovemRESUMO
BACKGROUND: Resistance to latent Mycobacterium tuberculosis (M.tb) infection, identified by persistently negative tuberculin skin tests (TST) and interferon-gamma release assays (IGRA), after close contact with pulmonary tuberculosis (TB) patients has not been extensively characterized. Stability of this "resistance" beyond 2 years from exposure is unknown. METHODS: 407 of 657 eligible human immunodeficiency virus (HIV)-negative adults from a TB household contact study with persistently negative TST (PTST-) or with stable latent M.tb infection (LTBI) were retraced 9.5 years (standard deviation = 3.2) later. Asymptomatic retraced contacts underwent 3 IGRAs and follow-up TST, and their M.tb infection status classified as definite/possible/probable. RESULTS: Among PTST- with a definite classification, 82.7% were concordantly TST-/ quantiferon-TB Gold- (QFT-), and 16.3% converted to TST+/QFT+ LTBI. Among original LTBI contacts, 83.6% remained LTBI, and 3.9% reverted their TST and were QFT-. Although TST and QFT concordance was high (κ = 0.78), 1.0% of PTST and 12.5% of original LTBI contacts could not be classified due to discordant TST and QFT results. Epidemiological variables did not differ between retraced PTST- and LTBI contacts. CONCLUSION: Resistance to LTBI, defined by repeatedly negative TST and IGRA, in adults who have had close contact with pulmonary TB patients living in TB-endemic areas, is a stable outcome of M.tb exposure. Repeated longitudinal measurements with 2 different immune assays and extended follow-up provide enhanced discriminatory power to identify this resister phenotype and avoid misclassification. Resisters may use immune mechanisms to control aerosolized M.tb that differ from those used by persons who develop "classic" LTBI.
Assuntos
Resistência à Doença , Características da Família , Tuberculose Latente/diagnóstico , Tuberculose Pulmonar/transmissão , Adolescente , Adulto , Citocinas/sangue , Doenças Endêmicas , Feminino , Humanos , Testes de Liberação de Interferon-gama , Masculino , Mycobacterium tuberculosis , Teste Tuberculínico , Uganda , Adulto JovemRESUMO
Immunosuppression resulting from HIV infection increases the risk of progression to active tuberculosis (TB) both in individuals newly exposed to Mycobacterium tuberculosis (MTB) and in those with latent infections. We hypothesized that HIV-positive individuals who do not develop TB, despite living in areas where it is hyperendemic, provide a model of natural resistance. We performed a genome-wide association study of TB resistance by using 581 HIV-positive Ugandans and Tanzanians enrolled in prospective cohort studies of TB; 267 of these individuals developed active TB, and 314 did not. A common variant, rs4921437 at 5q33.3, was significantly associated with TB (odds ratio = 0.37, p = 2.11 × 10(-8)). This variant lies within a genomic region that includes IL12B and is embedded in an H3K27Ac histone mark. The locus also displays consistent patterns of linkage disequilibrium across African populations and has signals of strong selection in populations from equatorial Africa. Along with prior studies demonstrating that therapy with IL-12 (the cytokine encoded in part by IL12B, associated with longer survival following MTB infection in mice deficient in CD4 T cells), our results suggest that this pathway might be an excellent target for the development of new modalities for treating TB, especially for HIV-positive individuals. Our results also indicate that studying extreme disease resistance in the face of extensive exposure can increase the power to detect associations in complex infectious disease.
Assuntos
Loci Gênicos , Predisposição Genética para Doença , Subunidade p40 da Interleucina-12/genética , Tuberculose/genética , Adolescente , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Infecções por HIV/microbiologia , Humanos , Subunidade p40 da Interleucina-12/metabolismo , Desequilíbrio de Ligação , Modelos Logísticos , Masculino , Mycobacterium tuberculosis , Estudos Prospectivos , Fatores de Risco , Tanzânia , Tuberculose/diagnóstico , UgandaRESUMO
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a major public health problem. Household contact studies identify children and adults along the spectrum from Mtb exposure to disease. In the Kawempe Community Health Study (conducted in Kampala, Uganda), 872 culture-confirmed pulmonary TB cases and their 2,585 contacts were enrolled during 2002-2012 and followed for up to 2 years each. Risk factors identified by time-to-event analysis for secondary TB differed among children, women, and men. Younger age (P = 0.0061), human immunodeficiency virus (HIV) (P = 0.0002), thinness (P = 0.01), absent bacille Calmette-Guérin vaccination (P = 0.002), and epidemiologic risk score (P < 0.0001) were risks for children. For women, risks were HIV (P < 0.0001), thinness (World Health Organization criteria; P < 0.0001), and epidemiologic risk score (P = 0.003). For men, HIV (P = 0.0007) and low body mass index (P = 0.008) resulted in faster progression to TB. Tuberculin skin testing (TST) identified contacts with Mtb infection and those with persistently negative TST. Risks for faster time to Mtb infection were identified, and included age (P = 0.0007), baseline TST induration (P < 0.0001), and epidemiologic risk score (P < 0.0001) only in children. Those with persistently negative TST comprised 10% of contacts but had no unique epidemiologic characteristics among adults. The burden of Mtb infection and disease is high in TB households, and risk factors for progression from exposure to infection and disease differ among children, women, and men.
Assuntos
Mycobacterium tuberculosis , Teste Tuberculínico/estatística & dados numéricos , Tuberculose Pulmonar/epidemiologia , Adolescente , Adulto , Criança , Pré-Escolar , Resistência à Doença , Suscetibilidade a Doenças/microbiologia , Características da Família , Feminino , HIV , Infecções por HIV/microbiologia , Humanos , Tuberculose Latente/epidemiologia , Tuberculose Latente/microbiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Tuberculose Pulmonar/microbiologia , Uganda/epidemiologia , Adulto JovemRESUMO
BACKGROUND: Appraisal delay is the time a patient takes to consider a symptom as not only noticeable, but a sign of illness. The study's objective was to determine the association between appraisal delay in seeking tuberculosis (TB) treatment and geographic distance measured by network travel (driving and pedestrian) time (in minutes) and distance (Euclidean and self-reported) (in kilometers) and to identify other risk factors from selected covariates and how they modify the core association between delay and distance. METHODS: This was part of a longitudinal cohort study known as the Kawempe Community Health Study based in Kampala, Uganda. The study enrolled households from April 2002 to July 2012. Multivariable interval regression with multiplicative heteroscedasticity was used to assess the impact of time and distance on delay. The delay interval outcome was defined using a comprehensive set of 28 possible self-reported symptoms. The main independent variables were network travel time (in minutes) and Euclidean distance (in kilometers). Other covariates were organized according to the Andersen utilization conceptual framework. RESULTS: A total of 838 patients with both distance and delay data were included in the network analysis. Bivariate analyses did not reveal a significant association of any distance metric with the delay outcome. However, adjusting for patient characteristics and cavitary disease status, the multivariable model indicated that each minute of driving time to the clinic significantly (p = 0.02) and positively predicted 0.25 days' delay. At the median distance value of 47 min, this represented an additional delay of about 12 (95% CI: [3, 21]) days to the mean of 40 days (95% CI: [25, 56]). Increasing Euclidean distance significantly predicted (p = 0.02) reduced variance in the delay outcome, thereby increasing precision of the mean delay estimate. At the median Euclidean distance of 2.8 km, the variance in the delay was reduced by more than 25%. CONCLUSION: Of the four geographic distance measures, network travel driving time was a better and more robust predictor of mean delay in this setting. Including network travel driving time with other risk factors may be important in identifying populations especially vulnerable to delay.
Assuntos
Acessibilidade aos Serviços de Saúde , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Tempo para o Tratamento/estatística & dados numéricos , Viagem/estatística & dados numéricos , Tuberculose/terapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Geografia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fatores de Tempo , Uganda , Adulto JovemRESUMO
Human genetic susceptibility for tuberculosis (TB) has been demonstrated by several studies, but few have examined the multiple innate and adaptive immunity genes comprehensively, age-specific effects and/or resistance to Mycobacterium tuberculosis (Mtb) infection (resistors (RSTRs)). We hypothesized that RSTRs, defined by a persistently negative tuberculin skin test, may have different genetic influences than Mtb disease. We examined 29 candidate genes in pathways that mediate immune responses to Mtb in subjects in a household contact study in Kampala, Uganda. We genotyped 546 haplotype-tagging single-nucleotide polymorphisms (SNPs) in 835 individuals from 481 families; 28.7% had TB, 10.5% were RSTRs, and the remaining 60.8% had latent Mtb infection. Among our most significant findings were SNPs in TICAM2 (P = 3.6 × 10(-6)) and IL1B (P = 4.3 × 10(-5)) associated with TB. Multiple SNPs in IL4 and TOLLIP were associated with TB (P < 0.05). Age-genotype interaction analysis revealed SNPs in IL18 and TLR6 that were suggestively associated with TB in children aged ⩽ 10 years (P = 2.9 × 10(-3)). By contrast, RSTR was associated with SNPs in NOD2, SLC6A3 and TLR4 (nominal P < 0.05); these genes were not associated with TB, suggesting distinct genetic influences. We report the first association between TICAM2 polymorphisms and TB and between IL18 and pediatric TB.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Interleucina-1beta/genética , Tuberculose/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Tuberculose/epidemiologia , Uganda/epidemiologia , Adulto JovemRESUMO
BACKGROUND: Despite sustained exposure to a person with pulmonary tuberculosis (TB), some M. tuberculosis (Mtb) exposed individuals maintain a negative tuberculin skin test (TST). Our objective was to characterize these persistently negative TST (PTST-) individuals and compare them to TST converters (TSTC) and individuals who are TST positive at study enrollment. METHODS: During a TB household contact study in Kampala, Uganda, PTST-, TSTC, and TST + individuals were identified. PTST- individuals maintained a negative TST over a 2 year observation period despite prolonged exposure to an infectious tuberculosis (TB) case. Epidemiological and clinical characteristics were compared, a risk score developed by another group to capture risk for Mtb infection was computed, and an ordinal regression was performed. RESULTS: When analyzed independently, epidemiological risk factors increased in prevalence from PTST- to TSTC to TST+. An ordinal regression model suggested age (p < 0.01), number of windows (p < 0.01) and people (p = 0.07) in the home, and sleeping in the same room (p < 0.01) were associated with PTST- and TSTC. As these factors do not exist in isolation, we examined a risk score, which reflects an accumulation of risk factors. This compound exposure score did not differ significantly between PTST-, TSTC, and TST+, except for the 5-15 age group (p = 0.009). CONCLUSIONS: Though many individual factors differed across all three groups, an exposure risk score reflecting a collection of risk factors did not differ for PTST-, TSTC and TST + young children and adults. This is the first study to rigorously characterize the epidemiologic risk profile of individuals with persistently negative TSTs despite close exposure to a person with TB. Additional studies are needed to characterize possible epidemiologic and host factors associated with this phenotype.
Assuntos
Características da Família , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Imunidade Adaptativa , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Prevalência , Fatores de Risco , Teste Tuberculínico , Tuberculose Resistente a Múltiplos Medicamentos/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Uganda/epidemiologiaRESUMO
BACKGROUND: Nutritional changes during and after tuberculosis treatment have not been well described. We therefore determined the effect of wasting on rate of mean change in lean tissue and fat mass as measured by bioelectrical impedance analysis (BIA), and mean change in body mass index (BMI) during and after tuberculosis treatment. METHODS: In a prospective cohort study of 717 adult patients, BMI and height-normalized indices of lean tissue (LMI) and fat mass (FMI) as measured by BIA were assessed at baseline, 3, 12, and 24 months. RESULTS: Men with wasting at baseline regained LMI at a greater rate than FMI (4.55 kg/m2 (95% confidence interval (CI): 1.26, 7.83 versus 3.16 (95% CI: 0.80, 5.52)) per month, respectively during initial tuberculosis therapy. In contrast, women with wasting regained FMI at greater rate than LMI (3.55 kg/m2 (95% CI: 0.40, 6.70) versus 2.07 (95% CI: -0.74, 4.88)), respectively. Men with wasting regained BMI at a rate of 6.45 kg/m2 (95% CI: 3.02, 9.87) in the first three months whereas women, had a rate of 3.30 kg/m2 (95% CI: -0.11, 6.72). There were minimal changes in body composition after month 3 and during months 12 to 24. CONCLUSION: Wasted tuberculosis patients regain weight with treatment but the type of gain differs by gender and patients may remain underweight after the initial phase of treatment.
Assuntos
Antituberculosos/uso terapêutico , Composição Corporal , Caquexia/etiologia , Síndrome de Emaciação por Infecção pelo HIV/complicações , Tuberculose Pulmonar/complicações , Adulto , Índice de Massa Corporal , Peso Corporal , Estudos de Coortes , Impedância Elétrica , Feminino , Humanos , Masculino , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Caracteres Sexuais , Tuberculose Pulmonar/tratamento farmacológico , UgandaAssuntos
Algoritmos , Busca de Comunicante/métodos , Medição de Risco/normas , Teste Tuberculínico/normas , Tuberculose/diagnóstico , Tuberculose/transmissão , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes , UgandaRESUMO
Reductions in tuberculosis (TB) incidence require identification of individuals at high risk of developing active disease, such as those with recent Mycobacterium tuberculosis (Mtb) infection. Using a prospective household contact (HHC) study in Kampala, Uganda, we diagnosed new Mtb infection using both the tuberculin skin test (TST) and interferon-gamma release assay (IGRA). Our study aimed to determine if the TST adds additional value to the characterization of IGRA converters. We identified 13 HHCs who only converted the IGRA (QFT-only converters), 39 HHCs who only converted their TST (TST-only converters), and 24 HHCs who converted both tests (QFT/TST converters). Univariate analysis revealed that TST-only converters were older. Additionally, increased odds of TST-only conversion were associated with older age (p = 0.02) and crowdedness (p = 0.025). QFT/TST converters had higher QFT quantitative values at conversion than QFT-only converters and a bigger change in TST quantitative values at conversion than TST-only converters. Collectively, these data indicate that TST conversion alone likely overestimates Mtb infection. Its correlation to older age suggests an "environmental" boosting response due to prolonged exposure to environmental mycobacteria. This result also suggests that QFT/TST conversion may be associated with a more robust immune response, which should be considered when planning vaccine studies.
RESUMO
BACKGROUND: Tuberculosis is a large source of morbidity and mortality among children. However, limited studies characterize childhood tuberculosis disease, and contact investigation is rarely implemented in high-burden settings. In one of the largest pediatric tuberculosis contact investigation studies in a resource-limited setting, we assessed the yield of contact tracing on childhood tuberculosis and indicators for disease progression in Uganda. METHODS: Child contacts aged <15 years in Kampala, Uganda, were enrolled from July 2002 to June 2009 and evaluated for tuberculosis disease via clinical, radiographic, and laboratory methods for up to 24 months. RESULTS: Seven hundred sixty-one child contacts were included in the analysis. Prevalence of tuberculosis in our child population was 10%, of which 71% were culture-confirmed positive. There were no cases of disseminated tuberculosis, and 483 of 490 children (99%) started on isoniazid preventative therapy did not develop disease. Multivariable testing suggested risk factors including human immunodeficiency virus (HIV) status (odds ratio [OR], 7.90; P < .001), and baseline positive tuberculin skin test (OR, 2.21; P = .03); BCG vaccination was particularly protective, especially among children aged ≤5 years (OR, 0.23; P < .001). Adult index characteristics such as sex, HIV status, and extent or severity of disease were not associated with childhood disease. CONCLUSIONS: Contact tracing for children in high-burden settings is able to identify a large percentage of culture-confirmed positive tuberculosis cases before dissemination of disease, while suggesting factors for disease progression to identify who may benefit from targeted screening.
Assuntos
Busca de Comunicante , Tuberculose/epidemiologia , Tuberculose/transmissão , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Modelos Logísticos , Masculino , Prevalência , Fatores de Risco , Uganda/epidemiologiaRESUMO
RATIONALE: The immunologic events surrounding primary Mycobacterium tuberculosis infection and development of tuberculosis remain controversial. Young children who develop tuberculosis do so quickly after first exposure, thus permitting study of immune response to primary infection and disease. We hypothesized that M. tuberculosis-specific CD8(+) T cells are generated in response to high bacillary loads occurring during tuberculosis. OBJECTIVES: To determine if M. tuberculosis-specific T cells are generated among healthy children exposed to M. tuberculosis and children with tuberculosis. METHODS: Enzyme-linked immunosorbent spot assays were used to measure IFN-γ production in response to M. tuberculosis-specific proteins ESAT-6/CFP-10 by peripheral blood mononuclear cells and CD8(+) T cells isolated from Ugandan children hospitalized with tuberculosis (n = 96) or healthy tuberculosis contacts (n = 62). MEASUREMENTS AND MAIN RESULTS: The proportion of positive CD8(+) T-cell assays and magnitude of CD8(+) T-cell responses were significantly greater among young (<5 yr) tuberculosis cases compared with young contacts (P = 0.02, Fisher exact test, P = 0.01, Wilcoxon rank-sum, respectively). M. tuberculosis-specific T-cell responses measured in peripheral blood mononuclear cells were equivalent between groups. CONCLUSIONS: Among young children, M. tuberculosis-specific CD8(+) T cells develop in response to high bacillary loads, as occurs during tuberculosis, and are unlikely to be found after M. tuberculosis exposure. T-cell responses measured in peripheral blood mononuclear cells are generated after M. tuberculosis exposure alone, and thus cannot distinguish exposure from disease. In young children, IFN-γ-producing M. tuberculosis-specific CD8(+) T cells provide an immunologic signature of primary M. tuberculosis infection resulting in disease.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Biomarcadores/sangue , Criança , Pré-Escolar , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Hospitalização , Humanos , Interferon gama/sangue , Masculino , Proteínas Recombinantes de Fusão/imunologia , Estatísticas não Paramétricas , UgandaRESUMO
BACKGROUND: BCG vaccines are given to more than 100 million children every year, but there is considerable debate regarding the effectiveness of BCG vaccination in preventing tuberculosis and death, particularly among older children and adults. We therefore aimed to investigate the age-specific impact of infant BCG vaccination on tuberculosis (pulmonary and extrapulmonary) development and mortality. METHODS: In this systematic review and individual participant data meta-analysis, we searched MEDLINE, Web of Science, BIOSIS, and Embase without language restrictions for case-contact cohort studies of tuberculosis contacts published between Jan 1, 1998, and April 7, 2018. Search terms included "mycobacterium tuberculosis", "TB", "tuberculosis", and "contact". We excluded cohort studies that did not provide information on BCG vaccination or were done in countries that did not recommend BCG vaccination at birth. Individual-level participant data for a prespecified list of variables, including the characteristics of the exposed participant (contact), the index case, and the environment, were requested from authors of all eligible studies. Our primary outcome was a composite of prevalent (diagnosed at or within 90 days of baseline) and incident (diagnosed more than 90 days after baseline) tuberculosis in contacts exposed to tuberculosis. Secondary outcomes were pulmonary tuberculosis, extrapulmonary tuberculosis, and mortality. We derived adjusted odds ratios (aORs) using mixed-effects, binary, multivariable logistic regression analyses with study-level random effects, adjusting for the variable of interest, baseline age, sex, previous tuberculosis, and whether data were collected prospectively or retrospectively. We stratified our results by contact age and Mycobacterium tuberculosis infection status. This study is registered with PROSPERO, CRD42020180512. FINDINGS: We identified 14â927 original records from our database searches. We included participant-level data from 26 cohort studies done in 17 countries in our meta-analysis. Among 68â552 participants, 1782 (2·6%) developed tuberculosis (1309 [2·6%] of 49â686 BCG-vaccinated participants vs 473 [2·5%] of 18â866 unvaccinated participants). The overall effectiveness of BCG vaccination against all tuberculosis was 18% (aOR 0·82, 95% CI 0·74-0·91). When stratified by age, BCG vaccination only significantly protected against all tuberculosis in children younger than 5 years (aOR 0·63, 95% CI 0·49-0·81). Among contacts with a positive tuberculin skin test or IFNγ release assay, BCG vaccination significantly protected against tuberculosis among all participants (aOR 0·81, 95% CI 0·69-0·96), participants younger than 5 years (0·68, 0·47-0·97), and participants aged 5-9 years (0·62, 0·38-0·99). There was no protective effect among those with negative tests, unless they were younger than 5 years (0·54, 0·32-0·90). 14 cohorts reported on whether tuberculosis was pulmonary or extrapulmonary (n=57â421). BCG vaccination significantly protected against pulmonary tuberculosis among all participants (916 [2·2%] in 41â119 vaccinated participants vs 334 [2·1%] in 16â161 unvaccinated participants; aOR 0·81, 0·70-0·94) but not against extrapulmonary tuberculosis (106 [0·3%] in 40â318 vaccinated participants vs 38 [0·2%] in 15â865 unvaccinated participants; 0·96, 0·65-1·41). In the four studies with mortality data, BCG vaccination was significantly protective against death (0·25, 0·13-0·49). INTERPRETATION: Our results suggest that BCG vaccination at birth is effective at preventing tuberculosis in young children but is ineffective in adolescents and adults. Immunoprotection therefore needs to be boosted in older populations. FUNDING: National Institutes of Health.
Assuntos
Tuberculose Pulmonar , Tuberculose , Adolescente , Adulto , Idoso , Vacina BCG , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Estudos Retrospectivos , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/prevenção & controle , VacinaçãoRESUMO
Tuberculosis (TB) remains a major public health threat globally, especially in sub-Saharan Africa. Both human and Mycobacterium tuberculosis (MTBC) genetic variation affect TB outcomes, but few studies have examined if and how the two genomes interact to affect disease. We hypothesize that long-term coexistence between human genomes and MTBC lineages modulates disease to affect its severity. We examined this hypothesis in our TB household contact study in Kampala, Uganda, in which we identified three MTBC lineages, of which one, L4.6-Uganda, is clearly derived and hence recent. We quantified TB severity using the Bandim TBscore and examined the interaction between MTBC lineage and human single-nucleotide polymorphisms (SNPs) genome-wide, in two independent cohorts of TB cases (n = 149 and n = 127). We found a significant interaction between an SNP in PPIAP2 and the Uganda lineage (combined p = 4 × 10-8). PPIAP2 is a pseudogene that is highly expressed in immune cells. Pathway and eQTL analyses indicated potential roles between coevolving SNPs and cellular replication and metabolism as well as platelet aggregation and coagulation. This finding provides further evidence that host-pathogen interactions affect clinical presentation differently than host and pathogen genetic variation independently, and that human-MTBC coevolution is likely to explain patterns of disease severity.
RESUMO
BACKGROUND: Pulmonary tuberculosis (TB) is one of the most deadly pathogens on earth. However, the majority of people have resistance to active disease. Further, some individuals, termed resisters (RSTRs), do not develop traditional latent tuberculosis (LTBI). The RSTR phenotype is important for understanding pathogenesis and preventing TB. The host genetic underpinnings of RSTR are largely understudied. METHODS: In a cohort of 908 Ugandan subjects with genome-wide data on single nucleotide polymorphisms, we assessed the heritability of the RSTR phenotype and other TB phenotypes using restricted maximum likelihood estimation (REML). We then used a subset of 263 RSTR and LTBI subjects with high quality phenotyping and long-term follow-up to identify DNA variants genome-wide associated with the RSTR phenotype relative to LTBI subjects in a case-control GWAS design and annotated and enriched these variants to better understand their role in TB pathogenesis. RESULTS: The heritability of the TB outcomes was very high, at 55% for TB vs. LTBI and 50.4% for RSTR vs. LTBI among HIV- subjects, controlling for age and sex. We identified 27 loci associated with the RSTR phenotype (P<5e-05) and our annotation and enrichment analyses suggest an important regulatory role for many of them. INTERPRETATION: The heritability results show that the genetic contribution to variation in TB outcomes is very high and our GWAS results highlight variants that may play an important role in resistance to infection as well as TB pathogenesis as a whole.
Assuntos
Resistência a Medicamentos , Tuberculose Latente/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Tuberculose Pulmonar/genética , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Funções Verossimilhança , Masculino , Pessoa de Meia-Idade , Fenótipo , Análise de Sequência de DNA , Tuberculose Pulmonar/tratamento farmacológico , Uganda , Adulto JovemRESUMO
BACKGROUND: The search for immune correlates of protection against Mycobacterium tuberculosis (MTB) infection in humans is limited by the focus on peripheral blood measures. Bronchoalveolar lavage (BAL) can safely be done and provides insight into cellular function in the lung where infection is first established. In this study, blood and lung samples were assayed to determine if heavily MTB exposed persons who resist development of latent MTB infection (RSTR) vs those who develop latent MTB infection (LTBI), differ in the make-up of resident BAL innate and adaptive immune cells. METHODS: Bronchoscopy was performed on 21 healthy long-term Ugandan RSTR and 25 LTBI participants. Immune cell distributions in BAL and peripheral blood were compared by differential cell counting and flow cytometry. RESULTS: The bronchoscopy procedure was well tolerated with few adverse reactions. Differential macrophage and lymphocyte frequencies in BAL differed between RSTR and LTBI. When corrected for age, this difference lost statistical significance. BAL CD4+ and CD8+ T cells were almost entirely composed of effector memory T cells in contrast to PBMC, and did not differ between RSTR and LTBI. BAL NKT, γδ T cells and NK cells also did not differ between RTSR and LTBI participants. There was a marginally significant increase (p = 0.034) in CD8 T effector memory cells re-expressing CD45RA (TEMRA) in PBMC of LTBI vs RSTR participants. CONCLUSION: This observational case-control study comparing unstimulated BAL from RSTR vs LTBI, did not find evidence of large differences in the distribution of baseline BAL immune cells. PBMC TEMRA cell percentage was higher in LTBI relative to RSTR suggesting a role in the maintenance of latent MTB infection. Functional immune studies are required to determine if and how RSTR and LTBI BAL immune cells differ in response to MTB.
Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Resistência à Doença/imunologia , Tuberculose Latente/imunologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Masculino , UgandaRESUMO
BACKGROUND: Limited data existed exclusively describing Mycobacterium tuberculosis lineage 3 (MTB-L3), sub-lineages, and clinical manifestations in Kampala, Uganda. This study sought to elucidate the circulating MTB-L3 sub-lineages and their corresponding clinical phenotypes. METHOD: A total of 141 M. tuberculosis isolates were identified as M. tuberculosis lineage 3 using Single nucleotide polymorphism (SNP) marker analysis method. To ascertain the sub-lineages/sub-strains within the M. tuberculosis lineage 3, the direct repeat (DR) loci for all the isolates was examined for sub-lineage specific signatures as described in the SITVIT2 database. The infecting sub-strains were matched with patients' clinical and demographic characteristics to identify any possible association. RESULT: The data showed 3 sub-lineages circulating with CAS 1 Delhi accounting for 55% (77/141), followed by CAS 1-Kili 16% (22/141) and CAS 2/CAS 8% (12/141). Remaining isolates 21% (30/141) were unclassifiable. To explore whether the sub-lineages differ in their ability to cause increased severe disease, we used extent of lung involvement as a proxy for severe disease. Multivariable analysis showed no association between M. tuberculosis lineage 3 sub-lineages with severe disease. The risk factors associated with severe disease include having a positive smear (OR = 9.384; CI 95% = 2.603-33.835), HIV (OR = 0.316; CI 95% = 0.114-0.876), lymphadenitis (OR = 0. 171; CI 95% = 0.034-0.856) and a BCG scar (OR = 0.295; CI 95% = 0.102-0.854). CONCLUSION: In Kampala, Uganda, there are three sub-lineages of M. tuberculosis lineage 3 that cause disease of comparable severity with CAS-Dehli as the most prevalent. Having HIV, lymphadenitis, a BCG scar and a smear negative status is associated with reduced severe disease.