Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Opt Express ; 12(8): 5073-5088, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34513243

RESUMO

The depolarization property of skin has been found to be important for skin cancer detection. Previous techniques based on light polarization lack the capability of depth differentiation. Polarization-sensitive optical coherence tomography (PS-OCT) has the advantage of both depth-resolved 3D imaging and high sensitivity to polarization. In this study, we investigate the depolarization property of skin tissue using PS-OCT, especially with the degree of polarization uniformity (DOPU) contrast. Well designed skin phantoms with various surface roughness levels and optical properties mimicking skin are imaged by PS-OCT and the DOPU values are quantified. The result shows a correlation between DOPU and surface roughness, where a higher roughness corresponds to a lower DOPU value. An index matching experiment with a water layer confirms the impact of surface condition on light depolarization. Refraction of backscattered photons on the surface boundary is attributed to the broadening of backscattering angle and thus depolarization. To the best of our knowledge, this is the first time the impact of surface roughness on DOPU is reported and its mechanism explained. Furthermore, through preliminary in vivo skin imaging, the capability of DOPU in detecting depolarization in skin is demonstrated. By utilizing the 3D imaging from PS-OCT, DOPU can offer a high-resolution depth differentiation and quantification of depolarization in skin tissue.

2.
Biomed Opt Express ; 11(5): 2745-2760, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32499957

RESUMO

Detecting articular cartilage (AC) degeneration in its early stage plays a critical role in the diagnosis and treatment of osteoarthritis (OA). Polarization-sensitive optical coherence tomography (PS-OCT) is sensitive to the alteration and disruption of collagen organization that happens during OA progression. This study proposes an effective OA evaluating method based on PS-OCT imaging. A slope-based analysis is applied on the phase retardation images to segment articular cartilage into three zones along the depth direction. The boundaries and birefringence coefficients (BRCs) of each zone are quantified. Two parameters, namely phase homogeneity index (PHI) and zonal distinguishability (Dz), are further developed to quantify the fluctuation within each zone and the zone-to-zone variation of the tissue birefringence properties. The PS-OCT based evaluating method then combines PHI and Dz to provide a G PS score for the severity of OA. The proposed method is applied to human hip joint samples and the results are compared with the grading by histology images. The G PS score shows very strong statistical significance in differentiating different stages of OA. Compared to using the BRC of each zone or a single BRC for the entire depth, the G PS score shows great improvement in differentiating early-stage OA. The proposed method is shown to have great potential to be developed as a clinical tool for detecting OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA